
Developer Day

dS Apps

Roman Köhler

Sept 20th 2012

System Documentation

Server Interfaces

Service API‘s (JSON), Scripting

State Machines

Color & Scene Concept, Structure, Events, Basics

Gray

Application

Guidelines

System

Interfaces

Device

Group/Function

System Basics

Yellow

dS Server Apps
Smartphone

Apps

Integration

External HW

• Box für Aufzählungen

• Zweitens

• Drittens

3

Topics

• Basics

• Mechanism of a dS-App

• Events and Subscriptions

• Coding

• Datasources

• UI

• Practical Example

• Extended und included services

• Best practices

Basics – Mechanism of a dS-App

4

- Events can be originated from

dS-Device, dSM-Statemaschine

or dSS-Events

- Matching to Subscription is

defined via XML-file of the dS-

App

- dSS & dSM will execute the API-

Calls, which might cause new

Events

dSS & dSM

•Incoming event

•Checking the subscriptions

App

•Preparing scriptenvironment

•Executing App-code

•Executing dS-API-Calls

dSS &dSM

•Execution of the queued
action-calls

Basics - Eventsubscription

<subscription

event-name=„callScene" handler-
name="javascript">

<parameter>

<parameter name="filename1">

myFile.js

</parameter>

<parameter name="filename2">

myOtherFile.js

</parameter>

<parameter name="script_id">

myApp

</parameter>

</subscription>

5

- Typical events:

callScene, modelReady, running,

highlevelevent, sendmail,

buttonClick, deviceSensorEvent

- Filtering in the subscription is

possible for some events, but such

filtering is static and can not be

changed by End-User settings

Basics - Coding

- Runs on a raised event

- Get Event-information via raisedEvent

global variable

- dS-specific Extension:

- Issue dS-system-commands (call a

Scene, get a deviceparameter,

raise a new Event)

- Accessing internal datasources

(Metering-Database, Propertytree)

- General Extension:

- simple TCP-Socket-Support

- CURL-Functions for advanced HTTP-

Requests.

6

Language: ECMAScript 5

Engine: SpiderMonkey 1.8.5

including native JSON-Support

Basics- Datasources

- Property-Tree

- Hierarchical organized tree data

structure

- Each node have a value or childs, and

attributes if it should be serialized and

read/writeable

- Dynamical datastructure, will be build

up each restart, parts are serialized.

- Contains all available information of

the running system

- Metering Database

- automatic filled by a background-

process from cycling dSM-queries

- Values are readable, but not writable

for Apps

7

- Apps can only save and restore

data, which are put in Propertytree

/scripts/<script_id>.

- Apps could hijack data from other

apps, be aware of security-issues.

Basics UI

- Each App can deliver some HTTP-

Pages, which will be hosted in the

dSS-Webserver

- dSS provide JSON-Request for:

- Get information of the structure of

the installation

- Accessing the Propertytree

- Querying the metering database

- Execute dSS-Commands like Event-

Raising, Scene-Calling and Device-

Configuration

8

- No server-side scripting possible,

only the JSON-Interface of the dSS.

- No POST-Requests, only GET-

Requests

- HTML-Files from a App are

placed in a subdirectory named

like the App, however, for

systemcalls, this HTML-Files are not

bound to a specific app

Practical Example

Accessing a webside and react on answer

<?xml version="1.0"?>

<subscriptions version="1">

<subscription event-name="wetter-url" handler-

name="javascript">

<parameter name="filename1">

/usr/share/dss/add-ons/wetter-url/wetter-url.js

</parameter>

<parameter name="script_id">wetter-
url</parameter>

</subscription>

</subscriptions>

9

- Actual available Apps can call a

URL to notify a remove server. The

Answer is not in any app be

evaluated

- CURL might block the dSS if the

URL is not avaible

• Box für Aufzählungen

• Zweitens

• Drittens

10

if (raisedEvent.name=='wetter-url') {

var h = new HTTP();

var data =

h.get('http://www.wunderground.com/global/stations/06660.html');

var sString=data.body;

// do some (primitive) parsing

sString=sString.substr(sString.indexOf('tempActual'));

sString=sString.substr(sString.indexOf('')+16,100);

sString=sString.substr(0,sString.indexOf(''));

var dTemperatur=parseFloat(sString); // 20.09.2012 : 7.3 C

// react on data -> Raise a Custom Event if < 15 C (id:1025)

if (dTemperatur<15) {

(new Event('highlevelevent',{id:1024})).raise();

}

}

Extended und included services

- Custom Events/Highlevelevents

- Special Events, which are administrated

mainly be system-addons, can be executed

by a simple event-raise.

- Action

- Structure of well-defined Property-Nodes,

which defines a sequence of actions and

can be “executed” by a simple event-raise

- Trigger

- Structure of well-defined Property-Nodes,

which defines a dynamic subscription

definition with explicit filtering on system-

events

- Conditions

- Structure of well-defined Property-Nodes,

generalizes Checks for actual system-

conditions

11

This services are result of the

system-addon development and

might be extended. It is advisable

to take care of version numbers

Best Practices
Does

- Initialize a App on a model-ready event

- Recurring cyclic Events can be configured via

subscription and a iCal-Timed Event

- Use Try/catch

- Communicate between App and UI via

Event-Raise

- Use the JSON-Call query for accessing the

property-tree

Don’ts

- Refrain from using setTimeout as far as possible

- Refrain from using property-listeners as far as possible

- Limit the script-execution time; break a task in subtasks

- Don’t manipulate propertytree nodes from a foreign

app directly

- Do not abuse the Logger-Utility

12

- When using to much memory, a

script can be stopped anytime

- Calls to devices might take some

time (0.5-2 seconds)

- Calls to devices are queued,

however this queue is very limited

Please be nice to your dSS-11

Hardware, it has limited ressources

