
digitalSTROM Virtual-Device-Connector API

digitalSTROM

Version: v1.6-branch*

May 4, 2020

*Revision: ff543697703e905f561456fa13185c572560da1e

1

©2020 digitalSTROM AG. All rights reserved.

The digitalSTROM logo is a trademark of the digitalSTROM. Use of this logo for commercial purposes without
the prior written consent of digitalSTROM may constitute trademark infringement and unfair competition in
violation of international laws.

No licenses, express or implied, are granted with respect to any of the technology described in this document.
digitalSTROM retains all intellectual property rights associated with the technology described in this document.
This document is intended to assist developers to develop applications that use or integrate digitalSTROM
technologies.

Every effort has been made to ensure that the information in this document is accurate. digitalSTROM is not
responsible for typographical errors.

digitalSTROM AG
Building Technology Park Zürich
Brandstrasse 33
CH-8952 Schlieren
Switzerland

Even though digitalSTROM has reviewed this document, digitalSTROM MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT THIS DOCUMENT
IS PROVIDED ”AS IS”, AND YOU, THE READER ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL DIGITALSTROM BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS DOCUMENT, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. NO DIGITALSTROM AGENT OR EMPLOYEE IS AUTHORIZED TO MAKE ANY
MODIFICATION, EXTENSION, OR ADDITION TO THIS WARRANTY.

Contents

1 Basics 4
1.1 Connection Management . 4
1.2 Generic Response . 4

1.2.1 Error Codes . 4
1.2.2 Error Types . 5

2 Terms 5

3 Discovery 6
3.1 Requirements . 6
3.2 Solution . 6
3.3 Notes . 6
3.4 Avahi service description files . 7

4 vDC host session 8
4.1 Basics . 8
4.2 vDC host Session initialisation . 8
4.3 vDC host Session operation . 8
4.4 vDC host Session termination . 9

5 vDC Announcement 9

6 vdSD Announcement host session 10
6.1 Device Announcement . 10
6.2 Device Operation . 10
6.3 Ending Device Operation . 11

7 Device and vDC Operation Methods and Notifications 12
7.1 Named Property access . 12

7.1.1 Reading Property values . 13
7.1.2 Writing property values . 15
7.1.3 Getting notified of property value (changes) . 15

7.2 Presence polling . 16
7.3 Actions . 17

7.3.1 Call Scene . 17
7.3.2 Save Scene . 17
7.3.3 Undo Scene . 18
7.3.4 Set local priority . 18
7.3.5 Dim Channel . 19
7.3.6 Call Minimum Scene . 19
7.3.7 Identify . 20
7.3.8 Set Control Value . 20
7.3.9 Set Output Channel Value . 21
7.3.10 Call Action . 21

7.4 Configuration Control and Processes . 21
7.4.1 Learn-In and -Out . 21
7.4.2 Authenticate . 22
7.4.3 Firmware Update . 22
7.4.4 Change dS-Device Configuration/Profile . 22
7.4.5 Identify vDC host device . 22

8 Change Log 24

3

1 Basics

1.1 Connection Management

• The VDC-API is based on Google protocol buffers.

• Transport level is a TCP socket connection, established by the vdSM to the vDC.

• The TCP stream consists of a 2-byte header containing the message length (16 bits, in network
byte order, maximum accepted length is 16384 bytes) followed by the protocol buffer message.

• The life time of the connection defines the vDC session. If the connection breaks, a new session
needs to be established.

1.2 Generic Response

In case of command failures the VDC returns a generic response message.

The errorType and userMessageToBeTranslated field are typically used to decide about program flow and
error recovery. The user message is suitable to be shown in user interfaces.

The code and description field are informational, and typically not designed to be shown to users.

Error case: GenericResponse

code integer numerical result code

errorType integer kind of failure with implication to error recovery

description string explanation text, for developers only

userMessageToBeTranslated string message suitable to be shown in user interfaces, will be
translated by dSS

1.2.1 Error Codes

The following error codes are defined.

Error Code Number Description

ERR_OK 0 Everything alright.

ERR_MESSAGE_UNKNOWN 1 The message id is unknown. This might happen due to im-
complete or incompatible implementation.

ERR_INCOMPATIBLE_API 2 The API version of the VDSM is not compatible with this VDC.

ERR_SERVICE_NOT_AVAILABLE 3 The VDC cannot respond. Might happen bcause the VDC is
already connected to another VDSM.

ERR_INSUFFICIENT_STORAGE 4 The VDC could not store the related data.

ERR_FORBIDDEN 5 The call is not allowed.

ERR_NOT_IMPLEMENTED 6 Not (yet) implemented.

ERR_NO_CONTENT_FOR_ARRAY 7 Array data was expected.

ERR_INVALID_VALUE_TYPE 8 Invalid data type.

ERR_MISSING_SUBMESSAGE 9 Submessge was expected.

ERR_MISSING_DATA 10 Additional data was exptected.

4

https://developers.google.com/protocol-buffers

ERR_NOT_FOUND 11 Addredded entity or object was not found.

ERR_NOT_AUTHORIZED 12 The caller is not authorized with the Native Device

1.2.2 Error Types

The following error types are defined.

Error Type Number Description

ERROR_TYPE_FAILED 0 Something went wrong. This is the usual error type.

ERROR_TYPE_OVERLOADED 1
The call failed because of a temporary lack of resources.
The operation might work if tried again, but it should NOT
be repeated immediately as this may simply exacerbate the
problem.

ERROR_TYPE_DISCONNECTED 2 The call required communication over a connection that has
been lost. The caller will need to try again.

ERROR_TYPE_UNIMPLEMENTED 3
The requested method is not implemented. The caller may
wish to revert to a fallback approach based on other meth-
ods.

2 Terms

Term Description

vDC
virtual device connector. A vDC is primarily a logical entity within the dS system
and has its own dSUID. A vDC connects to a Native IP Device or to a IP Gateway
with Native Gateway Connected Devices.

vDC host network device offering a server socket for vdsm to connect to. One vDC host can
host multiple logical vDCs, if the host supports multiple device classes.

vDC session logical connection between a vdSM and a vDC host (representing one or multiple
vDCs)

vdSM virtual digitalSTROM Meter. A vdSM can connect to one or several vDC hosts to
connect one or several logical vDCs to the dS system.

vdSD virtual digtalSTROM device. A vdSD represents a dS-Device system

5

3 Discovery

3.1 Requirements

• A vDC host must be discoverable by vdSMs automatically on a given network. Discovery must
work without any UI on the vDC host side.

• It must be avoided that a vdSM connects to a wrong (neighbour’s, for example) vDC host

3.2 Solution

• vDC hosts announce their services using Avahi (gnu implementation of Apple’s Bonjour)

• vdSMs look for available vDC hosts in the Avahi announcements and connect to at least one of
them. vDC hosts might reject connections if they are already connected to another vdSM.

• To avoid wrong connections, the vdSMwhich initiates a connectionmust be able to check possible
vDC announcements received via Avahi against an optional whitelist. If the whitelist exists, only
listed vDCs might be connected. The idea is that in small/simple installations connection is fully
automatic, but if conflicts arise in large setups (like show rooms or developer environments) these
can be solved by adding whitelists. Whitelists are located and maintained on the dss device.

3.3 Notes

• In a future version, the dSS configurator will provide a user interface to view and edit the whitelist.

• virtual device gateways productive with dSS version 1.9 currently have a vdsm of their own in the
gateway, which also announces itself via Avahi. This was required as a temporary solution, but
will be phased out with the next dSS version. For new developments, running vdSM instances on
devices other than a dSS is not allowed (nor needed) for production environments.

• The next planned version of the discovery mechanism will be smarter in avoiding duplicate con-
nections and keeping existing setup stable. It will also be able to seamlessly migrate now pro-
ductive virtual device gateways with a separate vdsm to using a dSS-hosted vdsm.

• vDC implementations adhering to 3.2 will continue to work as before.

6

3.4 Avahi service description files

• On a system with avahi-daemon installed, announcing services consists of creating .service files
and putting them into /etc/avahi/services

• The service types are chosen to be very unlikely to collide with other company’s services by us-
ing the ”ds-” prefix. If needed, dS service names could still be registered with IANA later (see
http://www.rfc-editor.org/rfc/rfc6335.txt)

• The port numbers used below are just examples, actual ports might differ.

• The advertisment for vdSMs must contain a txt record specifying the vdsm’s dSUID

• Once dS services can handle ipv6, the ”protocol” attribute should be set to ”any”

/etc/avahi/services/ds-vdc.service

<?xml version="1.0" standalone='no'?>
<!DOCTYPE service-group SYSTEM "avahi-service.dtd">
<service-group>

<name replace-wildcards="yes">digitalSTROM vDC host on %h</name>
<service protocol="ipv4">
<type>_ds-vdc._tcp</type>
<port>8444</port>
</service>

</service-group>

/etc/avahi/services/ds-vdsm.service

<?xml version="1.0" standalone='no'?>
<!DOCTYPE service-group SYSTEM "avahi-service.dtd">
<service-group>

<name replace-wildcards="yes">digitalSTROM vdSM on \%h</name>
<service protocol="ipv4">
<type>_ds-vdsm._tcp</type>
<port>8441</port>
<txt-record>dSUID=198C033E330755E78015F97AD093DD1C00</txt-record>
</service>

</service-group>

7

4 vDC host session

4.1 Basics

• a session represents the connection from a single vdSM to a single vDC host (which may host one
or multiple logical vDCs)

• a session is identical with having a TCP connection.

• a vdSM aims to keep the vDC sessions active all the time.

• if a session is terminated for any reason, the vdSM must try to establish a new session.

• Only if fundamental incompatibility between vDC host and vdSM is detected (no common API ver-
sion), the vdSM might cease trying to establish a session..

• at a given time, a vdSMmight have at most one single session with one particular vDC host (it may
of course have connections to multiple distinct vDC hosts).

• a vDC session must always start with a session initialisation phase, before it changes into the
operation phase.

4.2 vDC host Session initialisation

• vdSM connects to the vDC host

• vdSM calls ”Hello” method on vDC host.

Method hello vdSM -> vDC host

Request Parameter Type Description

dSUID string of 34 hex
characters (2*17)

dSUID of the vdSM

api_version integer vDC API version
The API version as described in this document is 2

Response

dSUID string of 34 hex
characters (2*17)

dSUID of the vDC host
Note: although the vDC host does not yet appear as a logical
entity in the current digitalSTROM specification, it still has
a dSUID in order to be addressable by custom apps and for
future dS system evolution

Error case: GenericResponse

code integer

RESULT_SERVICE_NOT_AVAILABLE:
This means the vDC host cannot accept the connection be-
cause it is already connected to another vdSM.
RESULT_INCOMPATIBLE_API:
The vdSM does not support the API version presented in
APIVersion

message string explanation text

4.3 vDC host Session operation

• session operation consists of announcing one or multiple logical vDCs (see below) and then an-
nouncing none, one or multiple vdSDs (see below).

• To avoid a vDC host session to implicitly end, some minimal communication must occur between
vdSM and vDC host in regular intervals (for example: ping/pong).

8

4.4 vDC host Session termination

• a vDC session is explicitly terminated when the Bye command is called:

Method bye vdSM -> vDC host

Request Parameter Type Description

- - -

Response: Generic Response

code integer 0 - sucess

• a vDC session is implicitly terminated when a Hello command asks for starting a new vDC session

• Closing the connection implicitly terminates the vDC session as well

5 vDC Announcement

• after vDC session is established, the vDC host must announce every logical vDC it hosts, before it
announces any of that logical vDC’s devices.

• It does so by calling the ”announcevdc” method

• unlike individual devices (see below), logical vDCs cannot vanish during an established vDC ses-
sion.

vDC Method announcevdc vDC host -> vdSM

Request Parameter Type Description

dSUID string of 34 hex
characters (2*17)

The dSUID of the vDC to be announced

Response: GenericResponse

code integer 0 - success

Error case: GenericResponse

code integer RESULT_INSUFFICIENT_STORAGE:
vdSM cannot handle another vDC

description string explanation text

errorType enum kind of failure with implication to error recovery

userMessageToBeTranslated string message suitable to be shown in user interfaces, translated
by the dSS

9

6 vdSD Announcement host session

• for every vDC announced, the vDC must announce all device managed by the vDC.

• A device is considered managed by the vDC when the vDC has resonably reliable information that
the device is in fact connected to or connectable from the vDC. This means that the vDC should
announce devices even if the device is temporarily offline.

• The vdSM can explicitly request removal of managed devices

6.1 Device Announcement

• vDC calls ”announcedevice” method on vdSM

Method announcedevice vDC host -> vdSM

Request Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

The dSUID of the device to be announced

vdc_dSUID string of 34 hex charac-
ters (2*17)

The dSUID of the logical vdc which contains this device

Response: GenericResponse

code integer 0 - success

Error case: GenericResponse

code integer RESULT_INSUFFICIENT_STORAGE:
vdSM cannot handle another device

message string explanation text

6.2 Device Operation

• after announcing a device, device level methods can be invoked by either party on the other, and
device level notifications can be sent by either party to the other.

• See Chapter 7 on Device Level Method Notifications for a specification of the supported individual
methods and notifications.

10

6.3 Ending Device Operation

• either vDC sends ”Vanish” notification to vdSM to indicate a device has been physically discon-
nected or unlearned (think: enOcean unidirectional switches for example) from the vDC.

Method vanish vDC host -> vdSM

Request Parameter Type Description

- - -

Response: Generic Response

code string of 34 hex charac-
ters (2*17)

The dSUID of the device that has vanished

• or vdSM calls ”remove”method on vDC to request a device to be removed from this vDC (butmight
have been connected to another vDC in themeantime). vDCmay reject removal only if it has 100%
knowledge the device is actually connected and operable (in which case the higher levels in dS
should see the device as active anyway and will not allow users to delete it)

Method remove vdSM -> vDC host

Request Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

The dSUID of the device to be removed

Response: GenericResponse

code integer 0 - success

Error case: GenericResponse

code integer

RESULT_FORBIDDEN:
vDC does not allow to remove the device, for example be-
cause it is verifiably physically connected to the vDC. However,
consider that for example wireless devices might get carried
away without being un-paired from their former vDC, and then
paired with another vDC in the same installation. In such a
case, dss/dsa will want to remove the device from the former
vDC/vdSM - the vDC must not reject such a deletion attempt.

message string explanation text

11

7 Device and vDC Operation Methods and Notifications

• Note: the vDC host and every logical vDC have dSUIDs and can be addressed by some (not all) of
the device levelmethods, in particular reading andwriting named properties for vDC configuration
and the presence polling method ping.

7.1 Named Property access

• Adressable entities are items within the vdc host that have their own dSUID. The dSUID can be
specified in vDC API request to specifically address the entity. The vDC host as a whole, the con-
tained vDC(s) and every virtual device has its own dSUID and thus is a addressable entity.

• Adressable entities have named properties which can be read and written by the vdSM and are in
some cases being pushed from the vDC.

• Properties that are defined in the digitalSTROM specifications (including this document) with
name, type and behaviour are considered system properties. Implementations conforming to the
specification must support these.

• Additionally, implementations might add implementation specific properties to extend functionality
beyond what the dS system demands. These properties’ names must always be prefixed by ”x-”.
It is further recommended to include an identifier for the party who introduces a property. For
example company Abc Inc. could prefix their properties with ”x-abc-”.

• Supported value types for properties are the simple types integer, double, boolean, string and
binary bytes, or a list of property elements which in turn contain a name (key) and either a simple
type (value), or yet another level of property elements. Note that while properties can be nested
indefinitely this way, it is explicitly recommended to keep nesting levels as low as possible.

• The available properties depend on the kind of the addressable entity (vdc, vdc host, virtual device)
- the complete set of properties supported by a virtual device entity is defined in the device profile
for that type of device.

• A common set of properties called common properties must be supported by all adressable en-
tities. These properties can be read to identify the type of entity, and get some basic information
for this.

12

7.1.1 Reading Property values

• Virtual devices can have zero to several buttons, binary (digital) inputs and sensors. The following
container properties provide access to the set of properties related to each input. The individual
subproperties are described in separate paragraphs further down.

Method getProperty vdSM -> vDC host

Request Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

The dSUID of the entity (device, vDC or vDC host) to read prop-
erties from

query property elements sub-
messages

A property tree structure consisting of property elements, but
with no values, specifying the property or properties to be re-
turned.

• The name of each property element specifies a property
on that level to access.

• If the name is specified empty, this is a wildcard mean-
ing: all elements from that level (for example: all inputs
or all scenes) will be returned.

• If the empty namewildcard is the last element specified
in a query tree branch, this means all deeper levels of
that branch should be returned as well.

Response: ResponseGetProperty

properties property elements sub-
messages

A property tree structure consisting of property elements and
values representing the properties selected by the query struc-
ture.

• The response has bascially the same tree structure as
the query.

• Where wildcards were used in the query, the response
tree will expand beyond the query structure returning
all substructures.

• Where unknown/nonexisting properties were re-
quested in the query, the response tree will not have a
corresponding element.

• Some properties might exist but not have a value at the
time of the query - these will return an explicit NULL
value.

13

Error case: GenericResponse

code integer
RESULT_FORBIDDEN:
the property exists but cannot be read (write-only, uncommon
case).

message string explanation text

14

7.1.2 Writing property values

Method setProperty vdSM -> vDC host

Request Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

The dSUID of the entity (device, vDC or vDC host) to write prop-
erties to

properties property elements sub-
messages

A property tree structure consisting of property elements and
values representing the properties to be written.

• The name of each property element specifies a property
on that level to access.

• If the name is specified empty, this is a wildcard mean-
ing all elements of that level (for example: all inputs or
all scenes) should be set to the same value.

Note:
channelState propertymust not be changed using setProperty,
butwith the separate setOutputChannelValue action (see below)
Note:
if writing multiple property values in one request, failing to
write any of these will cause setProperty to return an error.
However, some of the other properties included in the same
request might already be stored (in any order, not necessarily
in the order of values as passed in properties). Use separate
reqests if you need separate ok/failure status for each value.

Response: GenericResponse

code integer 0 = success

Error case: GenericResponse

code integer

RESULT_INVALID_VALUE_TYPE:
passed type is wrong and cannot be written.
RESULT_FORBIDDEN:
the property exists but cannot be read (write-only, uncommon
case).
RESULT_NOT_FOUND:
the receiver (device or vDC itself) specified through dSUID is
unknown at the callee.

7.1.3 Getting notified of property value (changes)

• Some properties (especially button/input/sensor states) might change within the device and can
be reported to the dS system via pushProperty, avoiding the need for the vdSM to poll values.

Notification name pushProperty vDC host -> vdSM

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

The dSUID of the entity (device, vDC or vDC host) from where
this notification originates

properties property elements sub-
messages

A property tree structure consisting of property elements and
values representing the information pushed to the vdSM.

15

7.2 Presence polling

• Presence polling is available for every addressable entity (vDC host, vDCs and all devices). Im-
plementation should return a pong only if the entity can be considered active in the system. If
possible at reasonable cost, a connection test with the device’s hardware should be made. In
some cases (unidirectional sensors) it might not be possible to query the device, in these cases
the vDC should apply reasonable heuristics to decide whether to report the device as active or
not.

Notification name ping vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

The dSUID of the entity (device, vDC or vDC host) to send the
ping to

Notification name pong vDC host -> vdSM

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

The dSUID of the entity (device, vDC or vDC host) from where
this pong originates

16

7.3 Actions

• Actions are operations that may change the internal state of the device and/or its outputs, often
depending on preconditions, but do not cause a distinct change of a single status value that could
be read back.

• Distinct, unconditional state changes that can be read back are always implemented as properties,
not actions

7.3.1 Call Scene

• calls a scene on the device

Notification name callScene vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSIDS of device(s) this call applies to.

scene integer dS scene number to call

force boolean if true, local priority is overridden

group optional integer
dS group number, present if the scene call was not applied to
a single device, but a zone/group (informational only, vdSM al-
ready creates separate calls for every involved device)

zoneID optional integer
dS global zone ID number, present if the scene call was not
applied to a single device, but a zone/group (informational only,
vdSM already creates separate calls for every involved device)

7.3.2 Save Scene

• save the relevant parts of the current state of the device (usually the output value, but possibly
multiple output values, flags, etc. in future devices) as scene.

Notification name saveScene vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSIDS of device(s) this call applies to.

scene integer dS scene number to save state into

group optional integer
dS group number, present if the scene call was not applied to
a single device, but a zone/group (informational only, vdSM al-
ready creates separate calls for every involved device)

zoneID optional integer
dS global zone ID number, present if the scene call was not
applied to a single device, but a zone/group (informational only,
vdSM already creates separate calls for every involved device)

17

7.3.3 Undo Scene

• Undoes a scene call. All output values are restored to the state they had before the scene call.

Notification name undoScene vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSIDS of device(s) this call applies to.

scene integer
This specifies the scene call to undo. Undo is executed only
if device’s last called scene matches scene. This is to prevent
undoing a scenewhichmight have been called in themeantime
from another origin (like a local on or off).

group optional integer
dS group number, present if the scene call was not applied to
a single device, but a zone/group (informational only, vdSM al-
ready creates separate calls for every involved device)

zoneID optional integer
dS global zone ID number, present if the scene call was not
applied to a single device, but a zone/group (informational only,
vdSM already creates separate calls for every involved device)

7.3.4 Set local priority

• Sets the device into local priority mode (i.e. sets the localPriority property) if the passed scene
does not have the dontCare flag set. This is used for including devices into area operations. Note
that this is a compatibility method to simplify dS 1.0 interfacing and might be removed later in dS
2.x.

Notification name setLocalPriority vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSIDS of device(s) this call applies to.

scene integer
This specifies the scene to check for the dontCare flag. If it is
set, nothing happens, if it is not set, the localPriority flag will
be set on the device level.

group optional integer
dS group number, present if the scene call was not applied to
a single device, but a zone/group (informational only, vdSM al-
ready creates separate calls for every involved device)

zoneID optional integer
dS global zone ID number, present if the scene call was not
applied to a single device, but a zone/group (informational only,
vdSM already creates separate calls for every involved device)

18

7.3.5 Dim Channel

• performs dimming a specific channel of the device. If the device does not have an output of the
specified channel type, this method call is ignored

Notification name dimChannel vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSIDS of device(s) this call applies to.

channel integer
Channel to start or stop dimming:
0: dim the default channel (e.g. brightness for lights)
1..239: dim channel of the specified type, if any

mode integer
1: start dimming upwards (incrementing output value)
-1: start dimming downwards (decrementing output value)
0 : stop dimming

area integer
0: no area restriction
1..4: only perform dimming action if the corresponding area on
scene (Tx_S1) does not have the dontCare0 flag set.

group optional integer
dS group number, present if the scene call was not applied to
a single device, but a zone/group (informational only, vdSM al-
ready creates separate calls for every involved device)

zoneID optional integer
dS global zone ID number, present if the scene call was not
applied to a single device, but a zone/group (informational only,
vdSM already creates separate calls for every involved device)

7.3.6 Call Minimum Scene

• if the device is off, set it to the minimal value needed to become logically switched on and partic-
ipate in dimming. Otherwise, no action is taken.

Notification name callSceneMin vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSIDS of device(s) this call applies to.

scene integer
This specifies the scene to check for the dontCare flag. If it is
set, nothing happens, if it is not set, and the device is off, the
minimum output level will be set.

group optional integer
dS group number, present if the scene call was not applied to
a single device, but a zone/group (informational only, vdSM al-
ready creates separate calls for every involved device)

zoneID optional integer
dS global zone ID number, present if the scene call was not
applied to a single device, but a zone/group (informational only,
vdSM already creates separate calls for every involved device)

19

7.3.7 Identify

• identify the device for the user - usually implemented as blinking the controlled light or an in-
dicator LED the device might have. Depending on device type, the alert might be implemented
differently, such as a beep, or hum or short movement.

Notification name Identify vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSIDS of device(s) this call applies to.

group optional integer
dS group number, present if the scene call was not applied to
a single device, but a zone/group (informational only, vdSM al-
ready creates separate calls for every involved device)

zoneID optional integer
dS global zone ID number, present if the scene call was not
applied to a single device, but a zone/group (informational only,
vdSM already creates separate calls for every involved device)

7.3.8 Set Control Value

• sets the value of an output channel.

Notification name setControlValue vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSIDS of device(s) this call applies to.

name string

The name of the control value.
This defines the semantic meaning of the value and thus how
the value will affect (or not) the output(s) of the device.
In dS 1.0, control name values are mapped to dS ”sensor type”
(see dS sensor type table) numbers. See chapter “Control Val-
ues” in “vDC API properties” for a list of available control val-
ues

value double control value (aka dS sensor value)

group optional integer
dS group number, present if the scene call was not applied to
a single device, but a zone/group (informational only, vdSM al-
ready creates separate calls for every involved device)

zoneID optional integer
dS global zone ID number, present if the scene call was not
applied to a single device, but a zone/group (informational only,
vdSM already creates separate calls for every involved device)

20

7.3.9 Set Output Channel Value

• sets the value of an output channel.

Notification name setOutputChannelValue vdSM -> vDC host

Notification Parameter Type Description

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSIDS of device(s) this call applies to.

channel integer
Channel to start or stop dimming:
0: dim the default channel (e.g. brightness for lights)
1..239: dim channel of the specified type, if any

apply_now optional boolean
if omitted or set to false, the new output value will be buffered
but not yet applied to the hardware. The next setOutputChan-
nelValue call with apply_now omitted or set to true will apply all
buffered values.

value double Value to be applied to the output; maybe omitted if ”automatic”
flag is set

automatic optional boolean Switch device to internal automatic control logic

group optional integer
dS group number, present if the scene call was not applied to
a single device, but a zone/group (informational only, vdSM al-
ready creates separate calls for every involved device)

zoneID optional integer
dS global zone ID number, present if the scene call was not
applied to a single device, but a zone/group (informational only,
vdSM already creates separate calls for every involved device)

7.3.10 Call Action

• calls an action on the device

Notification name GenericRequest vdSM -> vDC host

Notification Parameter Type Description

method string invokeDeviceAction

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSUIDs of device(s) this call applies to.

id string device action to execute

params optional additional parameters, json encoded object

7.4 Configuration Control and Processes

7.4.1 Learn-In and -Out

• starts the learn-in or learn-out process

Notification name GenericRequest vdSM -> vDC host

Notification Parameter Type Description

method string pair

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSUIDs of device(s) this call applies to.

establish bool true = learn-in, false = learn-out

timeout integer timeout in seconds, -1 to disable timeout

params optional additional parameters, json encoded object

21

7.4.2 Authenticate

• starts the authentication process

Notification name GenericRequest vdSM -> vDC host

Notification Parameter Type Description

method string authenticate

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSUIDs of device(s) this call applies to.

authData string json encoded object with authentication tokens

authScope string context, e.g. user id or device reference

params optional additional parameters, json encoded object

7.4.3 Firmware Update

• starts the firmware upgrade process

Notification name GenericRequest vdSM -> vDC host

Notification Parameter Type Description

method string firmwareUpgrade

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSUIDs of device(s) this call applies to.

checkonly bool true for a dry-run check only

clearsettings bool true for upgrade and reset of all configuration data to factory
defaults

params optional additional parameters, json encoded object

7.4.4 Change dS-Device Configuration/Profile

• activate new dS-Device configuration, e.g. profile

• as result the Submodules of the dS-Device may be modified, reordered or being removed at all

Notification name GenericRequest vdSM -> vDC host

Notification Parameter Type Description

method string setConfiguration

dSUID string of 34 hex charac-
ters (2*17)

One or multiple dSUIDs of device(s) this call applies to.

id string New Configurion ID

7.4.5 Identify vDC host device

• This call triggers the visual (and/or acustic) identification signal of the platform the vDC is running
on.

• The “identification” capability indicates whether the vDC supports this kind of identification.

Notification name GenericRequest vdSM -> vDC host

Notification Parameter Type Description

method string identify

22

dSUID string of 34 hex charac-
ters (2*17)

The dSUIDs of the vDC to be identified.

23

8 Change Log

Document History for DocumentID: digitalSTROM Virtual-Device-Connector API

date change description

2014-12-01 Initial version 1.0

2015-05-21 Version 1.1 Running vdSM instances on devices other than a dSS is not allowed for production envi-
ronments

24

	1 Basics
	1.1 Connection Management
	1.2 Generic Response
	1.2.1 Error Codes
	1.2.2 Error Types

	2 Terms
	3 Discovery
	3.1 Requirements
	3.2 Solution
	3.3 Notes
	3.4 Avahi service description files

	4 vDC host session
	4.1 Basics
	4.2 vDC host Session initialisation
	4.3 vDC host Session operation
	4.4 vDC host Session termination

	5 vDC Announcement
	6 vdSD Announcement host session
	6.1 Device Announcement
	6.2 Device Operation
	6.3 Ending Device Operation

	7 Device and vDC Operation Methods and Notifications
	7.1 Named Property access
	7.1.1 Reading Property values
	7.1.2 Writing property values
	7.1.3 Getting notified of property value (changes)

	7.2 Presence polling
	7.3 Actions
	7.3.1 Call Scene
	7.3.2 Save Scene
	7.3.3 Undo Scene
	7.3.4 Set local priority
	7.3.5 Dim Channel
	7.3.6 Call Minimum Scene
	7.3.7 Identify
	7.3.8 Set Control Value
	7.3.9 Set Output Channel Value
	7.3.10 Call Action

	7.4 Configuration Control and Processes
	7.4.1 Learn-In and -Out
	7.4.2 Authenticate
	7.4.3 Firmware Update
	7.4.4 Change dS-Device Configuration/Profile
	7.4.5 Identify vDC host device

	8 Change Log

