
digitalSTROM Virtual-Device-Connector API properties

digitalSTROM

Version: v1.6-branch*

May 4, 2020

*Revision: ff543697703e905f561456fa13185c572560da1e

1

©2020 digitalSTROM AG. All rights reserved.

The digitalSTROM logo is a trademark of the digitalSTROM. Use of this logo for commercial purposes without
the prior written consent of digitalSTROM may constitute trademark infringement and unfair competition in
violation of international laws.

No licenses, express or implied, are granted with respect to any of the technology described in this document.
digitalSTROM retains all intellectual property rights associated with the technology described in this document.
This document is intended to assist developers to develop applications that use or integrate digitalSTROM
technologies.

Every effort has been made to ensure that the information in this document is accurate. digitalSTROM is not
responsible for typographical errors.

digitalSTROM AG
Building Technology Park Zürich
Brandstrasse 33
CH-8952 Schlieren
Switzerland

Even though digitalSTROM has reviewed this document, digitalSTROM MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT THIS DOCUMENT
IS PROVIDED ”AS IS”, AND YOU, THE READER ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL DIGITALSTROM BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS DOCUMENT, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. NO DIGITALSTROM AGENT OR EMPLOYEE IS AUTHORIZED TO MAKE ANY
MODIFICATION, EXTENSION, OR ADDITION TO THIS WARRANTY.

Contents

1 Basics 5

2 Common properties for all addressable entities 6

3 Virtual device connector (vDC) properties 10
3.1 Properties on the vDC level . 10
3.2 vDC Capabilities . 10

4 Virtual digitalSTROM device (vdSD) properties 11
4.1 Properties on the vdSD level . 11

4.1.1 General device properties . 11
4.1.2 Inputs . 12
4.1.3 Outputs and Channels . 14
4.1.4 Scenes . 15

4.2 Button Input . 16
4.2.1 Button Input Description . 16
4.2.2 Button Input Settings . 16
4.2.3 Button Input State . 18

4.3 Binary Input . 19
4.3.1 Binary Input Description . 19
4.3.2 Binary Input Settings . 20
4.3.3 Binary Input State . 20

4.4 Sensor Input . 22
4.4.1 Sensor Input Description . 22
4.4.2 Sensor Input Settings . 24
4.4.3 Sensor Input State . 24

4.5 Action Descriptions . 25
4.5.1 Parameter Objects . 25
4.5.2 Device Action Descriptions . 25
4.5.3 Standard and Custom and Dynamic Actions . 25

4.6 States and Properties . 27
4.6.1 Device State Descriptions . 27
4.6.2 Device State Values . 27
4.6.3 Device Property Descriptions . 27
4.6.4 Device Property Values . 28

4.7 Device Events . 29
4.7.1 Device Event Descriptions . 29

4.8 Output . 30
4.8.1 Output Description . 30
4.8.2 Output Settings . 31
4.8.3 Output State . 33

4.9 Output Channel . 34
4.9.1 Output Channel Description . 34
4.9.2 Output Channel Settings . 34
4.9.3 Output Channel State . 34

4.10 Scene . 36
4.10.1 Scene Value . 36

4.11 Control Values . 37

5 digitalSTROMmapping compatibility 38
5.1 2-way buttons . 38
5.2 Multiple vdSDs in a single hardware device . 38

3

6 Change Log 39

4

1 Basics

• This document is based on the ”vDC API” specification. Please refer to the corresponding docu-
ment for general description of the API and the available messages/calls.

• This document specifies the named properties available for different types of addressable entities
(vDC, vdSD, vDC host) as well as the properties common for all types of addressable entities.

• All strings are UTF-8 encoded

• Properties marked optional may or may not be available in a particular implementation. If not
available, getProperty will just not return them in the result tree, but will NOT return an error
response (see description of getProperty in the “vDC API” specification for details). However, a
setProperty call containing a value for a non-implemented property will return an error.

5

2 Common properties for all addressable entities

• The common properties must be supported by entities which can be addressed via a dSUID using
this API (addressable entities). At the time of writing, this includes virtual devices, logical vDCs
and the vDC host, but may be extended to other entities.

• The ”type” property reveals the kind of entity.

• Properties common to a specific entity type are maintained in separate documents. In particular,
see ”vdSD properties” document for common properties of virtual devices.

• All names and fields are language independent, e.g. they must not change if the user selected a
different system language on the VDC host system.

Property Name acc Type / Range Description

dSUID r
string of 34
hex characters
(2*17)

the dSUID of the entity. Normally not used in regular vDC API calls,
as these require the dSUID in the getProperty() call. Useful for de-
bugging.

displayId r string Human-readable identification usually printed on the physical device
to identify the device, if available.

type r string
Type of entity:
vdSD” : virtual dS device
vDC” : a logical vDC
vDChost” : the vDC host
vdSM” : a vdSM

model r string
Human-readable model string of the entity. Should be descriptive
enough to allow a human to associate it with a kind of hardware or
software. Is mapped to “hardwareInfo” in vdsm and upstream

modelVersion r string Human-readable model version string of the device, if available

modelUID r string

digitalSTROM system unique ID for the functional model of the entity.

• modelUIDmust be equal between all functionally identical en-
tities (especially, devices) dS system.

• If different connected hardware devices provide EXACTLY the
same dS functionality, these devices MAY have the samemod-
elUID but will have different hardwareModelGuid.

• Vice versa, for example two identical hardware input devices
will have the same hardwareModelGuid, but differentmodelUID
if one input is mapped as a button, and the other as a binary-
Input.

modelVersion r optional string string describing themodel’s version as seen by the end user (usually
the firmware version of the vdc host)

hardwareVersion r optional string Human-readable string describing the hardware device’s version
represented by this entity, if available

hardwareGuid r optional string

hardware’s native globally unique identifier (GUID), if any, in URN-like
format: formatname:actualID

The following formats are in use:

• gs1:(01)ggggg(21)sssss =GS.1 formattedGTIN plus serial num-
ber

• macaddress:MMMMM = MAC Address

• enoceanaddress:XXXXXXXX = 8 hex digits EnOcean device ad-
dress

• uuid:UUUUUUU = UUID

continued on next page

6

continued from previous page

Property Name acc Type / Range Description

hardwareModelGuid r optional string

hardwaremodel’s native globally unique identification, if any, in URN-
like format: formatname:actualID

The following formats are in use:

• gs1:(01)ggggg = GS.1 formatted GTIN

• enoceaneep:oofftt = 6 hex digits EnOcean Equipment Profile
(EEP) number

vendorName r optional string Human-readable string of the device manufacturer or vendor

vendorGuid r optional string

globally unique identification of the vendor, in URN-like format:
The following formats are in use:

• enoceanvendor:vvv[:name] = 3 hex digits EnOcean vendor ID,
optionally followed by a colon and the clear text vendor name
if known

• vendorname:name = clear text name of the vendor

• gs1:(412)lllll = GS1 formatted Global Location Number of the
vendor

oemGuid r optional string Globaly unique identifier (GUID) of the product the hardware is em-
bedded in, if any - see hardwareGuid for format variants.

oemModelGuid r optional string Globaly unique identifier (GUID) of the product model (if any) in
gs1:(01)ggggggggggggg format. Often refered to as GTIN.

configURL r optional string full URL how to reach the web configuration of this device (if any)

deviceIcon16 r optional binary
png image

16x16 pixel png image to represent this device in the digitalSTROM
configurator UI

deviceIconName r optional string
filename-safe name for the icon (a-z, 0-9, _, -, no spaces or funny
characters!). This allows formore efficient caching inWebUIs -many
devices might have the same icon, so web UIs don’t need to load the
actual data (deviceIcon16) for every device again, as long as devices
show the same deviceIconName.

name r/w string

user-specified name of the entity. Is also stored upstreams in the
vdSM and further up, but is useful for the vDC to know for configura-
tion and debugging.
The vDC usually generates descriptive default names for newly con-
nected devices. When the vdSM registers a device, it should read this
property and propagate the name towards the dSS. When the user
changes the name via the dSS configurator, this property should be
updated with the new name.

deviceClass r optional string digitalSTROM defined unique name of a device class profile

deviceClassVersion r optional string revision number of the device class profile

active r optional
boolean

operation state of the addressable entity. If this is not true, this
means the associated hardware cannot operate normally at this time.
This might be due to communication problems, radio range limita-
tions, missing configuration etc.
When a vDC detects a change in active, this will be reported to vDCAPI
clients via pushProperty. However, vDCs cannot guarantee timely up-
dates of active in all cases. In particular, detecting hardware becom-
ing disconnected or no longer reachable might involve long timeouts
or might not be feasible at all, depending on the hardware type.
Note: active is optional only to maintain backwards compatibility with
earlier versions of this specification. Still, active should be imple-
mented in all modern vDCs.
Note: active does not replace the ping/pong mechanism that always
could be used to poll the operation state. ping/pong must be imple-
mented in all vDCs.

continued on next page

7

continued from previous page

Property Name acc Type / Range Description

8

Identification Properties in the vDC API

device instance device model device class Format

System IDs

dSUID modelGUID

digitalSTROM
system defined

formats

deviceClass

deviceClassVersion

xxxDescriptions

Real-world
identification,
database matching

of the technical
endpoint

hardwareGuid hardwareModelGuid

schema:<id>
formatted

of the hard- or
software the
technical endpoint
device is embedded
in

oemGuid oemModelGuid

of the vendor vendorId

End user faced info

of the device name model

free form texts, only
for human readers

of the vendor vendorName

of versions
modelVersion

hardwareVersion

Schemas used so far for Guids (schema:guid formats)

Schema example ID used for property where

gs1: (01)4050300870342(21)3696724640 hardwareGuid devices which have a native GTIN and serial
number, such as some DALI devices

gs1: (01)4050300870342 hardwareModelGuid,
oemModelGuid

devices which have a native GTIN for
identifying the device model

gs1: gs1:(412)7640161170001 vendorId Vendor's GLN if vendor has one

uuid: 2f402f80-ea50-11e1-9b23-001778216465 hardwareGuid devices identified best by UUID, like hue
bridge (or UPnP devices in general)

macaddress: 45:A2:00:BC:73:B8 hardwareGuid devices identified best by MAC-Adress like
Smarter iKettle 2 (in general IP devices that
have no better identification number of their
own)

enoceanaddress: A4BC23D2 hardwareGuid EnOcean device instances (32-bit Enocean
address)

enoceaneep: A50904 hardwareModelGuid EnOcean device type (24-bit profile number)

enoceanvendor: 002:Themokon vendorId EnOcean vendor Id code (and name if known
by vdc)

hueuid: 00:17:88:01:00:bd:ef:d1-0b hardwareGuid hue lights

smartermodel: ikettle2 hardwareModelGuid Smarter iKettle

vzughomemodel: MSLQ hardwareModelGuid VZug Home (IP connected) devices

vzugeyemodel: WA-AL hardwareModelGuid VZug eye (optical, retrofit) devices

vzughome: MSLQ#7768123672 hardwareGuid VZug Home (IP connected) devices

vzugeye: WA-AL#136273722 hardwareGuid VZug eye (optical, retrofit) devices

voxnetdevicemod
el:

voxnet219 hardwareModelGuid Revox Voxnet

voxnetdeviceid: #R001EC0DD0B1D0 hardwareGuid Revox Voxnet

sparkcoreid: 53ff1a065067544840310697 hardwareGuid (experimental) particle.io based plan44 light
devices

none all *Guid if the device does absolutely have no reliable
GUID, it will not return a value

�1

Figure 1: Overview of identifying properties

9

3 Virtual device connector (vDC) properties

• The following table applies to entities which have a value of ”vDC” for the ”type” property.

• All vDCsmust also support the basic set of properties as described under 2 ”Common properties”
above.

3.1 Properties on the vDC level

Property Name acc Type / Range Description

capabilities r list of property
elements

Descriptions (invariable properties) of the vdc’s capabilities.

• each capability is represented as a property element (key/-
value)

See 3.2 below for defined capabilities

zoneID r/w integer, global
dS Zone ID

this should be updated by the vdSM to reflect the default zone the vdc
has.

implementationId r string Unique id used to identify vdc implementation. Non-digitalSTROM
vdcs must use ”x-company-” prefix to avoid collisions.

3.2 vDC Capabilities

• Capabilities of the vDC. The properties described here are part of the vDC-level property. See
property capabilities above.

Property Name acc Type / Range Description

metering r optional
boolean

if true, the vdc provides metering data

identification r optional
boolean

if true, the vdc provides a way of identifying itself. E.g. a LED that can
be blinked.

dynamicDefinitions r optional
boolean

if true, the vdc supports dynamic device definitions, e.g. propertyDe-
scriptions and actionsDescriptions.

10

4 Virtual digitalSTROM device (vdSD) properties

• The following table applies to entities which have a value of ”vdSD” for the ”type” property.

• All vdSDsmust also support the basic set of properties as described under 2 ”Commonproperties”
above.

4.1 Properties on the vdSD level

4.1.1 General device properties

Property Name acc Type / Range Description

primaryGroup r integer, dS class
number

basic class (color) of the device

zoneID r/w integer, global
dS Zone ID

this should be updated by the vdSM to reflect the zone the device is in.
The vDC may use this value to optimize zone calls (i.e. bundle calls
to actual hardware if single device calls are slow)

progMode r/w optional
boolean

enables local programming mode (for those devices that have it)

modelFeatures r list of property
elements

Descriptions (invariable properties) of the device model features.

• each available feature is represented as a property element
(key/value) with a boolean true value. Not available features
are not included in the list.

• this property represents the virtual device’s row in the “visibil-
ity Matrix”, and determines what dSS configurator UI features
(dialogs, settings, controls) the device will have.

currentConfigId r optional string
Configuration or profile ID that is currently activate in the dS-Device.
The current active configuration can be changed with the ”setConfig-
uration” generic request message.

configurations r list of property
elements

List of configuration or profiles ID’s supported by this device.

11

4.1.2 Inputs

• Virtual devices can have zero to several buttons, binary (digital) inputs and sensors. The following
container properties provide access to the set of properties related to each input. The individual
subproperties are described in separate paragraphs further down.

Property Name acc Type / Range Description

buttonInputDescriptions r
optional list
of property
elements

Descriptions (invariable properties) of the buttons in the device.

• represented as a list of property elements, one for each button
in the device.

• The property elements are named sequentially “0”,”1”,...

See 4.2.1 Button Input Descriptions for details

buttonInputSettings r/w
optional list
of property
elements

Settings (properties that can be changed and are stored persistently
in the vDC) of the buttons in the device.
See 4.2.2 Button Input Settings for details

buttonInputStates r/w
optional list
of property
elements

State (changing during operation of the device, but not persistently
stored in the vDC) of a button.
See 4.2.3 Button Input States for details

binaryInputDescriptions r
optional list
of property
elements

Descriptions of the binary inputs in the device.
See 4.3.1 Binary Input Descriptions for details

binaryInputSettings r/w
optional list
of property
elements

Settings (properties that can be changed and are stored persistently
in the vDC) of the binary inputs in the device.
See 4.3.2 Binary Input Settings for details

binaryInputStates r/w
optional list
of property
elements

State (changing during operation of the device, but not persistently
stored in the vDC) of a binary input.
See 4.3.3 Binary Input States for details

sensorDescriptions r
optional list
of property
elements

Descriptions of the sensors in the device.
See 4.4.1 Sensor Input Descriptions for details

sensorSettings r/w
optional list
of property
elements

Settings (properties that can be changed and are stored persistently
in the vDC) of the sensors in the device.
See 4.5.3 Sensor Input Settings for details

sensorStates r/w
optional list
of property
elements

Value of a sensor. Changing during operation of the device, but not
persistently stored in the vDC.
See 4.4.3 Sensor Input States for details

deviceActionDescriptions r
optional list
of property
elements

Descriptions of the available action methods in the device.
See 4.5 Action Descriptions for details

customActions r/w
optional list
of property
elements

Descriptions of the user defined actions methods in the device.
See 4.5 Action Descriptions for details

deviceStateDescriptions r
optional list
of property
elements

Descriptions of the available state objects in the device.
See 4.6.1 State Descriptions for details

deviceStates r/w
optional list
of property
elements

Value of the state objects.
See 4.6.2 State Descriptions for details

12

devicePropertyDescriptions r
optional list
of property
elements

Descriptions of the available property objects in the device.
See 4.6.3 Property Descriptions for details

deviceProperties r/w
optional list
of property
elements

Value of the property objects.
See 4.6.4 Property Descriptions for details

deviceEventDescriptions r
optional list
of property
elements

Descriptions of the available events in the device.
See 4.7 Event Descriptions for details

13

4.1.3 Outputs and Channels

Virtual devices in the digitalSTROM system can have a single output (or none at all, as for pure button
devices). The output can have one or multiple channels. Outputs with complex functionality like color
lights or blinds usually have multiple channels to control different aspects of the output separately
Important Notes:

• Devices with no output at all do not have output- and channel-related properties.

• Output is meant as “output functionality” - like a lamp, a blind, a washing machine. Such outputs
may need multiple physical parameters to control, and thus will likely have multiple physical/-
electrical output lines. These multiple parameters do not count as separate outputs, but are
called channels (of the single output, see below)

• If a physical device does have multiple, independent outputs (such as a multi-channel dimmer for
example), a vDC must represent such a physical device as multiple virtual devices, with separate
dSUIDs. The dSUID numbering scheme provides an enumeration field (17th byte) for that purpose.

For further notes on compatibility see 5.

Property Name acc Type / Range Description

outputDescription r
optional list of
output descrip-
tion properties

Descriptions (invariable properties) of the device’s output. Devices
with no output don’t have this property.
See 4.8.1 Output Descriptions for details

outputSettings r/w
optional list of
output settings
properties

Settings (properties that can be changed and are stored persistently
in the vDC) of the device’s output. Devices with no output don’t have
this property.
See 4.8.2 Output Settings for details

outputState r/w
optional list of
output state
properties

State (changing during operation of the device, but not persistently
stored in the vDC) of the outputs. Devices with no output don’t have
this property.
See 4.8.3 Output States for details

channelDescriptions r
optional list
of property
elements

Descriptions (invariable properties) of the channels in the device. See
4.9.1 Channel Descriptions for details

channelSettings r/w
optional list
of property
elements

Settings (properties that can be changed and are stored persistently
in the vDC) of the channels in the device.
See 4.9.2 Channel Settings for details

channelStates r/w
optional list
of property
elements

State (changing during operation of the device, but not persistently
stored in the vDC) of the channels.
See 4.9.3 Channel States for details

14

4.1.4 Scenes

• This property is available on devices having at least one output with standard behaviour defined,
such as light, or shadow. Input-only devices do not support this property.

Property Name acc Type / Range Description

scenes r/w
optional list
of property
elements

The scene table of the device

• represented as a list of property elements, one for each scene.

• The property elements are named by scene number, starting
with “0”.

See 4.10 Scene Descriptions for details

15

4.2 Button Input

4.2.1 Button Input Description

• Description (invariable properties) of a button. The properties described here are contained in the
elements of the device-level 4.1.2 buttonInputDescriptions property.

Property Name acc Type / Range Description

name r string human readable name/number for the input (e.g. matching labels for
hardware connectors)

dsIndex r integer 0..N-1, where N=number of buttons in this device.

supportsLocalKeyMode r boolean can be local button

buttonID r optional integer
0..n

ID of physical button. No ID means no fixed assignment to a button.
All elements of amulti-function hardware buttonmust have the same
buttonID.

buttonType r integer enum

Type of physical button
0: undefined 1: single pushbutton
2: 2-way pushbutton
3: 4-way navigation button
4: 4-way navigation with center button
5: 8-way navigation with center button
6: on-off switch

buttonElementID r integer

Element of multi-contact button
0: center
1: down
2: up
3: left
4: right
5: upper left
6: lower left
7: upper right
8: lower right
Note: For undefined buttonType, buttonElement just enumerates the
elements (0..numElements-1)

4.2.2 Button Input Settings

• Settings (properties that can be changed and are stored persistently in the vDC) for a button. The
properties described here are contained in the elements of the device-level 4.1.2 buttonInputSet-
tings property.

Property Name acc Type / Range Description

group r/w integer dS group number

function r/w integer 0..15 see LTNUM descriptions
(0: device, 5: room, ...)

mode r/w integer
255: inactive
0: standard
2: presence
5..8 : button1..4 down
9..12 : button1..4 up

channel r/w integer enum
channel this button should control
0: (default) button controls the default channel
1..191: reserved for digitalSTROM standard channel types
192..239: device specific channel types

16

setsLocalPriority r/w boolean button should set local priority

callsPresent r/w boolean button should call present (if system state is absent)

17

4.2.3 Button Input State

• State (current state, changing during operation of the device, but not persistently stored in the
vDC) of a button. The properties described here are contained in the elements of the device-level
4.1.2 buttonInputStates property.

Property Name acc Type / Range Description

value r boolean or
NULL

false=inactive
true=active
NULL=unknown state

clickType r integer enum

Most recent click state of the button:
0: tip_1x
1: tip_2x
2: tip_3x
3: tip_4x
4: hold_start
5: hold_repeat
6: hold_end
7: click_1x
8: click_2x
9: click_3x
10: short_long
11: local_off
12: local_on
13: short_short_long
14: local_stop
255: idle (no recent click)

age r double or NULL age of the state shown in the value and clickType fields in seconds.
If no recent state is known, returns NULL.

error r integer enum

0: ok
1: open circuit
2: short circuit
4: bus connection problem
5: low battery in device
6: other device error

Alternatively, buttons can emit direct scene calls instead of button clicks. So the buttonInputState can
contain the actionId and actionMode properties instead of value and clickType when the most current
button action was not a regular click event, but a direct scene call:

Property Name acc Type / Range Description

actionId r integer scene id

actionMode r integer enum
0: normal
1: force
2: undo

18

4.3 Binary Input

4.3.1 Binary Input Description

• Description (invariable properties) of a binary input. The properties described here are contained
in the elements of the device-level 4.1.2 binaryInputDescriptions property.

Property Name acc Type / Range Description

name r string human readable name/number for the input (e.g. matching labels for
hardware connectors)

dsIndex r integer 0..N-1, where N=number of binary inputs in this device.

inputType r
integer
(inputs with
binary functions
supported only)

0: poll only
1: detects changes

inputUsage r integer enum
Describes the usage field for the input (beyond device color)
0: undefined (generic usage or unknown)
1: room climate
2: outdoor climate
3: climate setting (from user)

sensorFunction r integer enum

hardwired function of this input if it is not freely configurable.
See sensorFunction in binaryInputSettings[] below for all possible val-
ues.
Specifically, hardwired functions in use are:
0 means generic input with no hardware-defined functionality.
12 Battery low status (set when battery is low)

updateInterval r double how fast the physical value is tracked, in seconds

19

4.3.2 Binary Input Settings

• Settings (properties that can be changed and are stored persistently in the vDC) for a button. The
properties described here are contained in the elements of the device-level 4.1.2 binaryInputSet-
tings property.

Property Name acc Type / Range Description

group r/w integer dS group number

sensorFunction r/w integer enum

0 App Mode (no system function)
1 Presence
2 Light – not yet in use
3 Presence in darkness – not yet in use
4 Twilight
5 Motion detector
6 Motion in darkness– not yet in use
7 Smoke detector
8 Wind monitor
9 Rain monitor
10 Sun radiation
11 Thermostat
12 Battery low status (set when battery is low)
13 Window contact (set when window is open)
14 Door contact (set when door is open)
15 Window handle, status is close, open, or tilted
16 Garage door contact (set when garage door is open)
17 Sun protection
18 Frost detection
19 Heating system enabled
20 Heating change-over, switch between heating and cooling mode
21 Initialization status (set during startup or powerup of devices)
22 Malfunction: Connected device is broken and requires mainte-
nance. Operation may have seized.
23 Service: Connected device requires maintenance. Normal opera-
tion still possible.

4.3.3 Binary Input State

• State (current state, changing during operation of the device, but not persistently stored in the
vDC) of a button. The properties described here are contained in the elements of the device-level
4.1.2 binaryInputStates property.

Property Name acc Type / Range Description

value r boolean or
NULL

false=inactive
true=active
NULL=unknown state

extendedValue r integer or NULL
The property ’extendedValue’ replaces the property ’value’.
If the property extendedValue is present, the property value is not
needed.
The data from property ’value’ is overwritten.

age r double or NULL age of the state shown in the value and clickType fields in seconds.
If no recent state is known, returns NULL.

error r integer enum

0: ok
1: open circuit
2: short circuit
4: bus connection problem
5: low battery in device
6: other device error

20

21

4.4 Sensor Input

4.4.1 Sensor Input Description

• Description (invariable properties) of a sensor input. The properties described here are contained
in the elements of the device-level 4.1.2 sensorDescriptions property.

Property Name acc Type / Range Description

name r string human readable name/number for the sensor

dsIndex r integer 0..N-1, where N=number of sensors in this device.

sensorType r integer enum

Describes the type of physical unit the sensor measures
0 : none
1 : Temperature in °C
2 : Relative humitity in %
3 : Illumination in lux
4 : supply voltage level in V
5 : CO concentration in ppm
6 : Radon activity in Bq/m3
7 : gas type sensor
8 : particles <10µm in μg/m3
9 : particles <2.5µm in μg/m3
10 : particles <1µm in μg/m3
11 : room operating panel set point, 0..100%
12 : fan speed, 0..1 (0=off, <0=auto)
13 : Wind speed in m/s (average)
14 : Active Power in W
15 : Electric current in A
16 : Energy Meter in kWh
17 : Apparent Power in VA
18 : Air pressure in hPa
19 : Wind direction in degrees
20 : Sound pressure level in dB
21 : Precipitation intensity in mm/m2 (sum of last hour)
22 : CO2 concentration in ppm
23 : Wind gust speed in m/s
24 : Wind gust direction in degrees
25 : Generated Active Power in W
26 : Generated Energy in kWh
27 : Water Quantity in l
28 : Water Flow Rate in l/s

22

sensorUsage r integer enum

Describes the usage field for the sensor
0: undefined (generic usage or unknown)
1: room
2: outdoor
3: user interaction (setting, dial)
4: device level measurement (total, sum)
5: device level last run
6: device level average

min r double min value

max r double max value

resolution r double resolution (size of LSB of actual HW sensor)

updateInterval r double
how fast the physical value is tracked, in seconds, approximately. The
purpose of this is to give information about the time resolution that
can be expected from that sensor.

aliveSignInterval r double how fast the sensor minimally sends an update. If sensor does not
push a value for longer than that, it can be considered out-of-order

23

4.4.2 Sensor Input Settings

• Settings (properties that can be changed and are stored persistently in the vDC) for a sensor. The
properties described here are contained in the elements of the device-level 4.1.2 sensorSettings
property.

Property Name acc Type / Range Description

group r/w integer dS group number

minPushInterval r/w double minimum interval between pushes of changed state in seconds
default = 2

changesOnlyInterval r/w double
minimum interval between pushes with same value (in case sensor
hardware sends update, but with same value as before - only age will
differ).
default = 0 = all updates from hardware trigger a push

4.4.3 Sensor Input State

• State (current state, changing during operation of the device, but not persistently stored in the
vDC) of a sensor. The properties described here are contained in the elements of the device-level
4.1.2 sensorStates property.

Property Name acc Type / Range Description

value r double or NULL current sensor value in the unit according to sensorType. If no recent
state is known, returns NULL

age r double or NULL age of the state shown in the value field in seconds.
If no recent state is known, returns NULL.

contextId r integer or NULL Numerical Id of context data.
Optional, returns NULL if context data not available.

contextMsg r string or NULL Text message of context data.
Optional, returns NULL if context data not available.

error r integer enum

0: ok
1: open circuit
2: short circuit
4: bus connection problem
5: low battery in device
6: other device error

24

4.5 Action Descriptions

4.5.1 Parameter Objects

• Parameter descriptions used by action method and properties

Field Name Attributes Type Description

type mandatory numeric
enumeration
string

data type of the parameter value

min opt, numeric
only

double minimum value

max opt, numeric
only

double maximum value

resolution opt, numeric
only

double resolution (size of LSB of actual HW sensor)

siunit opt, numeric
only

string
The SI Unit as a string, incl. prefixes like kilo or
milli. For examples see http://www.ebyte.it/library/
educards/siunits/TablesOfSiUnitsAndPrefixes.html

options opt, enumer-
ation only

list of key:value
pairs

the option values for the enumeration

default opt, all types double, string or
option

the default value of this parameter

4.5.2 Device Action Descriptions

Action descriptions describe basic functionalities and operation processes of a device. They serve as a
template to create custom defined actions as variation of templates with modified parameter sets.

• Description of the basic device actions methods. The properties described here are contained in
the elements of the deviceActionDescriptions property (invariable).

Property Name Attributes Type Description

name mandatory string name of this action property entry

params optional list of Parame-
ter Objects

parameter list related to this action

description optional string description of this template action

4.5.3 Standard and Custom and Dynamic Actions

• Standard actions are static and immutable, and as such implemented and defined by the device.

• Custom actions are configured by the user. They can be created via API and are persistently stored
on the VDC.

• Dynamic device actions are created on the native device side. They can be created, changed or
deleted by interaction on the device itself.

• Actions properties described here are contained in the elements of the standardActions property
(invariable).

Property Name Attributes Type Description

name mandatory string unique id of this standard action property entry, always has
prefix std.

25

 http://www.ebyte.it/library/educards/siunits/TablesOfSiUnitsAndPrefixes.html
 http://www.ebyte.it/library/educards/siunits/TablesOfSiUnitsAndPrefixes.html

action mandatory string name of the template action, on which this standard action is
based upon

params optional
list of Param-
eter Name :
Value pairs

list of parameter values that are different to the template ac-
tion

• Actions properties described here are contained in the elements of the customActions property.

Property Name Attributes Type Description

name mandatory string unique id of this custom action property entry, always has pre-
fix custom.

action mandatory string reference id of the template action, on which this standard
action is based upon

title mandatory string human readable name of this custom action, in most cases
given the user

params optional
list of Param-
eter Name :
Value pairs

list of parameter values that are different to the template ac-
tion

• Actions properties described here are contained in the elements of the dynamicDeviceActions
property.

Property Name Attributes Type Description

name mandatory string unique id of this custom action property entry, always has pre-
fix dynamic.

title mandatory string human readable name of this custom action, in most cases
given the user

26

4.6 States and Properties

Device State represent a status within a device. States differ from Properties in the way that they have
limited number of possible values, whereas Properties are more generic and do have limitations on
their value, with respect to their type.

4.6.1 Device State Descriptions

• Description of the state. The properties described here are contained in the elements of the de-
viceStateDescriptions property (invariable).

• State changes are signaled along with the new state value.

Property Name Attributes Type Description

name mandatory string name of this state property entry

options mandatory list of Option Id :
Value pairs

option list related to this state, e.g. 0: Off, 1: Initializing, 2:
Running, 3: Shutdown

description optional string description of this state

4.6.2 Device State Values

• Value of the state. The properties described here are contained in the elements of the deviceStates
property.

Property Name Attributes Type Description

name mandatory string name of this state property entry

value mandatory string option value

4.6.3 Device Property Descriptions

• Description of a device property. The properties described here are contained in the elements of
the devicePropertyDescriptions property (invariable).

Property Name Attributes Type Description

name mandatory string name of this property entry

type mandatory numeric
enumeration
string

data type of the property value

min opt, numeric
only

double minimum value

max opt, numeric
only

double maximum value

resolution opt, numeric
only

double resolution (size of LSB of actual HW sensor)

siunit opt, numeric
only

string
The SI Unit as a string, incl. prefixes like kilo or
milli. For examples see http://www.ebyte.it/library/
educards/siunits/TablesOfSiUnitsAndPrefixes.html

27

 http://www.ebyte.it/library/educards/siunits/TablesOfSiUnitsAndPrefixes.html
 http://www.ebyte.it/library/educards/siunits/TablesOfSiUnitsAndPrefixes.html

options opt, enumer-
ation only

list of key:value
pairs

the option values for the enumeration

default opt, all types double, string or
option

the default value of this property

4.6.4 Device Property Values

• Value of the property. The properties described here are contained in the elements of the device-
Properties property.

Property Name Attributes Type Description

name mandatory string name of this state property entry

value mandatory string property value

28

4.7 Device Events

Device Events are state-less

a status within a device. States differ from Properties in the way that they have limited number of pos-
sible values, whereas Properties are more generic and do have limitations on their value, with respect
to their type.

4.7.1 Device Event Descriptions

• Description of the event. The properties described here are contained in the elements of the
deviceEventDescriptions property (invariable).

Property Name Attributes Type Description

name mandatory string name of this event property entry

description optional string description of this event

29

4.8 Output

• Note: devices with no output functionality return a NULL response when queried for outputDe-
scription, outputSettings or outputState

4.8.1 Output Description

• Description (invariable properties) of the device’s output. The properties described here are con-
tained in the device-level 4.1.3 outputDescription property.

Property Name acc Type / Range Description

defaultGroup r integer dS Application Id of the device

name r string human readable name/number for the output (e.g. matching labels
for hardware connectors)

function r integer enum

0: on/off only (with channel 1, ”brightness”, switched on when
”brightness”>”onThreshold”)
1: dimmer (with channel 1, “brightness”)
2: positional (e.g. valves, blinds)
3: dimmer with color temperature (with channels 1 and 4, “bright-
ness”, “ct”)
4: full color dimmer (with channels 1-6, “brightness”, “hue”, “satu-
ration”, “ct”, “cieX”, “cieY”
5: bipolar, with negative and positive values (e.g. combined heating/-
cooling valve, in/out fan control)
6: internally controlled (e.g. device has temperature control algo-
rithm integrated)

outputUsage r integer enum
Describes the usage field for the output (beyond device color)
0: undefined (generic usage or unknown)
1: room
2: outdoors
3: user (display/indicator)

variableRamp r boolean supports variable ramps

maxPower r optional double max output power in Watts. If absent, power capability is undefined

activeCoolingMode r optional
boolean

Set to true if the device can activly cool (e.g. air-condition and FCU
devices)

30

4.8.2 Output Settings

• Settings (properties that can be changed and are stored persistently in the vDC) for the device’s
output. The properties described here are contained in the device-level 4.1.3 outputSettings prop-
erty.

31

Property Name acc Type / Range Description

activeGroup r/w integer dS Application Id of the device

groups r/w
list of boolean
property ele-
ments

contains a list of property elements with a boolean value, represent-
ing this device’s output’s membership in one or multiple groups.

• The name of the subproperty represents the dS group number
(“1” to “63”).

• For efficiency reasons, only “true” values are returned, so the
result of requesting the entire subproperty list with a wildcard
query is a list of groups the output is member of (thus usually
consisting of a few elements only)

• When querying a single group by ID, a NULL value is returned
if the output is not a member of the queried group.

• For writing, value can be true or false to add or remove a group
membership.

mode r/w integer enum
0: disabled, inactive
1: binary
2: gradual
127: default (generically enabled using device’s default mode)

pushChanges r/w boolean if set, locally generated changes in the output value will be pushed

onThreshold r/w optional double Light outputs: minimum brightness level (0..100%) that will switch
on non-dimmable lamps. Defaults to 50%.

minBrightness r/w optional double
minmum brightness (0..100%) that hardware supports (for dimming
outputs). This value is used for callSceneMin and dimming. Devices
pre-set this value according to the dimmer capabilities, but the value
can be changed to adjust depending on connected light

dimTimeUp r/w optional integer Light outputs: dim up time in digitalSTROM 8-bit dim time format:
4msbits = exp, 4lsbits = lin, time = 100ms/32 ∗ 2exp ∗ (17 + lin)

dimTimeDown r/w optional integer Light outputs: dim down time in digitalSTROM 8-bit dim time format

dimTimeUpAlt1 r/w optional integer Light outputs: alternate 1 dim up time in digitalSTROM 8-bit dim time
format

dimTimeDownAlt1 r/w optional integer Light outputs: alternate 1 dim down time in digitalSTROM 8-bit dim
time format

dimTimeUpAlt2 r/w optional integer Light outputs: alternate 2 dim up time in digitalSTROM 8-bit dim time
format

dimTimeDownAlt2 r/w optional integer Light outputs: alternate 2 dim down time in digitalSTROM 8-bit dim
time format

heatingSystemCapability r/w optional integer
enum

Climate control: specifies how ”heatingLevel” controlValue is ap-
plied:
1: heating only (heatingLevel 0..100 -> output 0..100)
2: cooling only (heatingLevel 0..-100 -> output 0..100)
3: heating and cooling (heatingLevel -100..0..100 is directly applied in
case of bipolar output, and absolute value (0..100) is applied to unipo-
lar outputs)

heatingSystemType r/w optional integer
enum

Climate control: specifies which kind of valve type or actuator is at-
tached:
0: undefined
1: floor heating (valve)
2: radiator (valve)
3: wall heating (valve) 4: convector passive
5: convector active
6: floor heating low energy (valve)

32

4.8.3 Output State

• State (current state, changing during operation of the device, but not persistently stored in the
vDC) of the device’s output. The properties described here are contained in the device-level 4.1.3
outputState property.

Property Name acc Type / Range Description

localPriority r/w boolean
enables local priority of the device’s output. In local priority mode,
device ignores scene calls unless the scene has the ignoreLocalPri-
ority flag set, or the callScene call has the force parameter set to true

error r integer enum

0: ok
1: open circuit / lamp broken
2: short circuit
3: overload
4: bus connection problem
5: low battery in device
6: other device error

33

4.9 Output Channel

4.9.1 Output Channel Description

Description (invariable properties) of the device’s channels. The properties described here are con-
tained in the device-level 4.1.3 channelDescriptions property.

Property Name acc Type / Range Description

name r string human readable name/number for the channel (e.g. matching labels
for hardware connectors)

channelType r integer
Numerical Type Id of the channel. For definitions of output chan-
nel types please refer to the document ds-basics.pdf, section ”Output
Channels”.

dsIndex r integer
0..N-1, where N=number of channels in this device. The index is used
for dS-OS and DSMAPI addressing. Index ”0” is by definition the de-
fault output channel.

min r double min value

max r double max value

resolution r double resolution

The following attributes shall no longer be used (Version 1.0.2):

channelIndex r integer
0..N-1, where N=number of channels in this device. The index is de-
vice specific and no assumption on any particular order of indexes vs.
channel types must be made.

4.9.2 Output Channel Settings

Settings (properties that can be changed and are stored persistently in the vDC) for the device’s chan-
nels. The properties described here are contained in the device-level 4.1.3 channelSettings property.

Notice Currently there are no per-channel settings defined

Property Name acc Type / Range Description

- - - -

4.9.3 Output Channel State

Current state of the device’s channels. The properties described here are contained in the device-level
4.1.3 channelStates property.

Notice Channel State must not be written to. Instead, the notification setOutputChannelValuemust
be used.

Property Name acc Type / Range Description

value r double current channel value (brightness, blind position, power on/off)

age r double
age of the state shown in the value field in seconds. This indicates
when the value was last applied to the actual device hardware, or
when an actual output status was last received from the device.
age is NULL when a new value was set, but not yet applied to the
device

34

http://developer.digitalstrom.com/Architecture/ds-basics.pdf

35

4.10 Scene

• A scene stores a set of values to apply to the outputs of the device when a particular scene is
called.

• As outputs can be looked at in two different ways, by index or by channel (see description for 4.1.3
“Outputs” above), each scene contains the scene values for each output in two forms, once by
output number (property “outputs”) and once by channel type (property “channels”)

Property Name acc Type / Range Description

channels r/w list of property
elements

For each channel, a scene value (consisting of value and dontCare
flag, see 4.10.1 Scene Value below).

• represented as a list of property elements, one for each chan-
nel in the device.

• The property elements are named by channel type id (which
can be 0 for devices controlling an unspecified functionality,
such as a generic switch output)

effect r/w integer enum

Specifies the effect to be applied when this scene is invoked. The fol-
lowing standard effects are defined (%%%note: enummight change,
specification in discussion %%%):

0 : no effect, immediate transition 1 : smooth normal transition (cor-
responds with former dimTimeSelector==0)
2 : slow transition (corresponds with former dimTimeSelector==1)
3 : very slow transition (corresponds with former dimTimeSelec-
tor==2)
4 : blink (for light devices) / alerting (in general: an effect that draws
the user’s attention)

Notes:

• stored scene values may or may not be used to parametrize
the effect, depending on the type of effect. For example, the
blink effect with a multi-color lamp must use the color values
as set in the scene, regardless of the dontCare flags.

• When the effect has finished, channels with dontCare set will
revert to the value present before the effect, while channels
with dontCare not set are expected to have now the values as
stored in the scene.

dontCare r/w boolean
scene-global dontCare flag: if set, calling this scene does not apply
any of the stored channel values, regardless of the individual scene
value’s dontCare flags

ignoreLocalPriority r/w boolean calling this scene overrides local priority

4.10.1 Scene Value

• A scene value contains the value to apply to the related output when the scene is called, and the
dontCare flag that can be set to prevent the value to be applied

Property Name acc Type / Range Description

value r/w double The value for the related channel. The value range and resolution is
the same as for the related channel’s channelState value property

dontCare r/w boolean
channel-specific dontCare flag:
if set, calling this scene does not apply the stored channel value (but
possibly other channel’s values which don’t have dontCare set)

automatic r/w boolean channel-specific automatic flag:
if set, calling this scene activates the internal automatic control logic

36

4.11 Control Values

• Control Values are not regular properties, but like properties, control values are named values
and thus similar to properties. Unlike properties, control values cannot be read but only written
to a vdSD, using the setControlValue call.

Property Name acc Type / Range Description

heatingLevel w double
(dS Sensortype 50): level of heating intensity -100..100:
0=no heating or cooling
100=max heating
-100=max cooling

37

5 digitalSTROM mapping compatibility

An important design goal for the vDC API and the property set was to avoid carrying over dS specific
limitations. On the other hand, the vDC API was designed to support capabilities current dSS 1.x archi-
tecture can’t support yet, but are likely to be implemented in future dS versions. Still, the vDC + vdSM
needs to be compatible with existing dSS 1.x installations.

To achieve this, vDC devices (vdSDs) that provide functionality similar or equal to existing digitalSTROM
hardware devices (dSDs), must have sensible default settings that make themmappable into existing
dSS 1.x installations. This chapter lists the conventions that must be followed for certain device types
to make them mappable into dSS 1.x environments.

5.1 2-way buttons

2-way buttons (rockers) like present in many EnOcean devices must conform to the following default
behaviour:

• The vdSD must have two button inputs (represented by 2 array elements in the buttonInputDe-
scriptions/Settings/States property arrays)

• The buttonInput with index = 0 must represent the ”down” button

• The buttonInput with index = 1 must represent the ”up” button

• buttonInputSettings[0].mode must be 6 (down button paired with second input)

• buttonInputSettings[1].mode must be 9 (up button paired with first input)

5.2 Multiple vdSDs in a single hardware device

Some hardware devices contain more than one instance of a certain functional unit. Usually, these are
represented as a separate vdSD each, to allow maximum flexibility in the way the functional units can
be used.
For example, a dual 2-way button EnOcean device will be represented as 2 entirely separate vdSDs,
because despite the physical proximity, each button might control a different zone, group or function.
By default, such a device will be represented as 2 separate SW-TKM210 (dual input) devices. However,
the vdSM might want to represent it as a single SW-TKM200 (quad input) device. To allow the vdSM
to find out which and how many vdSDs are in the same hardware device, the vdSD should expose this
information as follows:

• The dSUID has a 17th byte reserved to enumerate devices belonging to the same hardware, start-
ing at zero.

• The first 16 bytes of the dSUID needs to be the same for all vdSD belonging to the same hardware.

• Usually, multiple devices are enumerated 0,1,2, etc. However, in some cases, a hardware device
might have different configurations with different numbers of vdSD depending on configuration
- in these cases enumeration might follow other schemes than simple increment. For example,
the aforementioned dual 2-way button EnOcean device uses 0 for the first and 2 for the second
rocker - to possibly allow representing each rocker as two separate vdSDs (0,1 and 2,3).

• This association of vdSDs to a containing hardware device must only bemade when the number of
contained vdSDs and their enumeration is unambiguous and permanent. So just 3 modules that
usually ship mounted on a common frame, but can be easily separated and used independently
should not use the enumeration but have fully distinct dSUIDs (different in first 16 bytes).

38

6 Change Log

Document History for DocumentID: digitalSTROM Virtual-Device-Connector API properties

date change description

2014-12-01 Initial version 1.0

2015-01-13 Version 1.0.1 Removed references to non existing properties numDevicesInHW and deviceIndexInHW.
Added description of dSUID enumeration. instead

2017-05-10 Version 1.0.2 Added outputChannelDescriptions with index-based names

39

	1 Basics
	2 Common properties for all addressable entities
	3 Virtual device connector (vDC) properties
	3.1 Properties on the vDC level
	3.2 vDC Capabilities

	4 Virtual digitalSTROM device (vdSD) properties
	4.1 Properties on the vdSD level
	4.1.1 General device properties
	4.1.2 Inputs
	4.1.3 Outputs and Channels
	4.1.4 Scenes

	4.2 Button Input
	4.2.1 Button Input Description
	4.2.2 Button Input Settings
	4.2.3 Button Input State

	4.3 Binary Input
	4.3.1 Binary Input Description
	4.3.2 Binary Input Settings
	4.3.3 Binary Input State

	4.4 Sensor Input
	4.4.1 Sensor Input Description
	4.4.2 Sensor Input Settings
	4.4.3 Sensor Input State

	4.5 Action Descriptions
	4.5.1 Parameter Objects
	4.5.2 Device Action Descriptions
	4.5.3 Standard and Custom and Dynamic Actions

	4.6 States and Properties
	4.6.1 Device State Descriptions
	4.6.2 Device State Values
	4.6.3 Device Property Descriptions
	4.6.4 Device Property Values

	4.7 Device Events
	4.7.1 Device Event Descriptions

	4.8 Output
	4.8.1 Output Description
	4.8.2 Output Settings
	4.8.3 Output State

	4.9 Output Channel
	4.9.1 Output Channel Description
	4.9.2 Output Channel Settings
	4.9.3 Output Channel State

	4.10 Scene
	4.10.1 Scene Value

	4.11 Control Values

	5 digitalSTROM mapping compatibility
	5.1 2-way buttons
	5.2 Multiple vdSDs in a single hardware device

	6 Change Log

