
digitalSTROM System Interfaces

digitalSTROM

Version: v1.4-branch*

May 22, 2017

*Revision: 6d0a8b6a9a98d5874ebfa542a78ea62bf3c04f8d

1

©2017 digitalSTROM AG. All rights reserved.

The digitalSTROM logo is a trademark of the digitalSTROM. Use of this logo for commercial purposes without
the prior written consent of digitalSTROM may constitute trademark infringement and unfair competition in
violation of international laws.

No licenses, express or implied, are granted with respect to any of the technology described in this document.
digitalSTROM retains all intellectual property rights associated with the technology described in this document.
This document is intended to assist developers to develop applications that use or integrate digitalSTROM
technologies.

Every effort has been made to ensure that the information in this document is accurate. digitalSTROM is not
responsible for typographical errors.

digitalSTROM AG
Building Technology Park Zürich
Brandstrasse 33
CH-8952 Schlieren
Switzerland

Even though digitalSTROM has reviewed this document, digitalSTROM MAKES NO WARRANTY OR
REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT, ITS QUALITY,
ACCURACY, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT THIS DOCUMENT
IS PROVIDED ”AS IS”, AND YOU, THE READER ARE ASSUMING THE ENTIRE RISK AS TO ITS QUALITY AND
ACCURACY.

IN NO EVENT WILL DIGITALSTROM BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR INACCURACY IN THIS DOCUMENT, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. NO DIGITALSTROM AGENT OR EMPLOYEE IS AUTHORIZED TO MAKE ANY
MODIFICATION, EXTENSION, OR ADDITION TO THIS WARRANTY.

Contents

1 Introduction 5

2 Webservices 6
2.1 JSON . 6
2.2 SOAP . 6

3 Property Tree 7
3.1 Supported Data Types . 7
3.2 /system . 7

3.2.1 /system/uptime . 7
3.2.2 /system/version . 7
3.2.3 /system/EventInterpreter . 7
3.2.4 /system/security . 8
3.2.5 /system/host . 8
3.2.6 /system/js . 8

3.3 /config . 8
3.3.1 /config/subsystems/Metering . 9
3.3.2 /config/subsystems/Apartment . 9
3.3.3 /config/subsystems/DSSim . 9
3.3.4 /config/subsystems/DSBusInterface . 9
3.3.5 /config/subsystems/WebServer . 10
3.3.6 /config/subsystems/EventInterpreter . 10
3.3.7 /config/geodata . 11

3.4 /apartment . 11
3.4.1 /apartment/zones . 11
3.4.2 /apartment/dSMeters . 14

3.5 /usr . 15
3.6 /usr/states . 16
3.7 /usr/addon-states . 16
3.8 /usr/triggers[0..x] . 16
3.9 /usr/events[0..x] . 16
3.10 /scripts . 17

4 Events 18
4.1 Subscriptions . 18

4.1.1 Static Subscriptions . 18
4.1.2 Dynamic Subscriptions . 18
4.1.3 Filter . 18

4.2 Event Reference . 19
4.2.1 callScene and undoScene . 19
4.2.2 buttonClick . 20
4.2.3 deviceSensorEvent . 20
4.2.4 running . 20
4.2.5 model_ready . 20
4.2.6 dsMeter_ready . 21

4.3 Private Addon Events . 21
4.4 Event Handler . 21

4.4.1 JavaScript Handler . 21
4.4.2 Raise Event Handler . 22
4.4.3 High Level Event Handler . 22
4.4.4 Action Execute Handler . 22
4.4.5 Trigger Handler . 23

3

4.4.6 Sendmail Handler . 23

5 System Scripts 24
5.1 States - System States . 24

5.1.1 States with apartment-scope . 24
5.1.2 States with zone-scope . 25
5.1.3 States with group-scope . 25
5.1.4 States with device-scope . 25

5.2 States - Addonstates . 26
5.3 Trigger . 26
5.4 Actions . 28
5.5 Conditions . 29
5.6 Chaining Trigger and Actions . 30
5.7 Included scripts - UDA . 30
5.8 Included scripts - Solar computer . 30

6 Authentication 32
6.1 Configurator and Addons . 32
6.2 Applications . 32

6.2.1 Getting a Token . 32
6.2.2 Approving the token . 32
6.2.3 Logging in . 32
6.2.4 Using the session token . 33

7 Metering 34
7.1 Available Data . 34
7.2 Accessing the Data . 34

7.2.1 Current Metering Data . 34
7.2.2 Time-series Data . 34

8 Communication using custom events 35
8.1 Conventions . 35
8.2 App to App communication . 35

8.2.1 Directly accessing the propertytree . 35
8.2.2 raising a event . 35

8.3 UI to App communication . 35
8.3.1 Directly accessing the propertytree . 35
8.3.2 raising a event . 36

8.4 App to UI communication . 36

9 Device Model Features 37
9.1 Available Model Features . 37

10 Single Device Descriptions 56
10.1 Descriptions . 56

10.1.1 Events . 56
10.1.2 States . 56
10.1.3 Properties . 56
10.1.4 Measurements . 56
10.1.5 Action Descriptions . 56
10.1.6 Standard Actions . 56

10.2 Translations . 56
10.3 Database . 57

11 Certification Rules 58

4

Introduction

This document contains instructions how to use and access the digitalSTROM-Server, both for internal
addon modules that enhance the system functionality and for external applications.

The application interface itself is defined in two additional documents:

• Webservice via JSON

• Server Scripting

The documents can be downloaded from http://developer.digitalstrom.org/Architecture.

Notice This documents refers to digitalSTROM system release R1.13.3 fromMarch 2017. Any later
release may have additional or removed functionality.

5

http://developer.digitalstrom.org/Architecture

Webservices

JSON

External applications communicate with the digitalSTROM-Server through the JSON API. The full doc-
umentation and description of all the available JSON functions and parameters can be found on the
digitalSTROM developer website in the dss download directory. Please refer to the document version
corresponding to your dSS software release:

http://developer.digitalstrom.org/download/dss/

Access is granted with a token based login described in 6.

JSON requests to the API are built up like this:
https://<server ip>:<port>/json/<class>/<function>?<paramter>&<parameter>

For example this function calls scene 5 on light devices in zone 1307:
https://10.0.0.2:8080/json/zone/callScene?id=1307&groupID=1&sceneNumber=5&force=true&token=xxxxxxxx

Not all JSON functions take parameters, for example json/apartment/getConsumption.

The JSON formatted reply returns true for ”ok” if the digitalSTROM-Server successfully processed the
query, and JSON objects and arrays if data was requested.

Example reply (json/apartment/getConsumption):

{
"ok": true,
"result": {

"consumption": 74
}

}

SOAP

The SOAP interface has been removed.

6

http://developer.digitalstrom.org/download/dss/

Property Tree

The property tree allows the dSS to expose data to the outside world, it also provides means of com-
munication with internal scripts, serves as a data storage for internal scripts and remote applications
(such as smartphone apps or HTML based user interfaces) and also allows limited control over the
scheduled events queue.

Each node of the property tree can be either a container, holding further child nodes, or a leaf node,
carrying actual data. When you look at the root level, you will see a logical structure of five nodes, each
holding specific system properties:

• /system - general information about the dSS, information and control of the event queue

• /config - configuration of the dSS and it’s subsystems

• /apartment - information about your digitalSTROM installation, here you will see the configured
zones, connected meters, devices and their configurations.

• /usr - shared dynamic configuration for all Apps (like User-Defined-Actions, system states, trig-
gers …)

• /scripts - internal scripts running on the dSS will show up here by their configured script_id’s and
can use this area to store data.

Supported Data Types

The property tree supports three data types:

• string: - sequence of characters

• boolean: - “true” or “false”

• integer: numeric integer value

/system

The system block covers general information about the dSS and the host it is running on, shows a list of
scheduled events in the event queue and allows to cancel them, it also presents security settings such
as available users and application tokens.

/system/uptime

This is a leaf node which contains the uptime of the dSS in seconds.

/system/version

This is a container node that holds information about the dSS version, version of the Linux distribution
that the dSS is running on, name of the build host and the git revision of the dSS source code.

/system/EventInterpreter

This is a container node that holds information about the event queue of the dSS, providing statistics
on processed events and also listing the scheduled events.

Note: removing a scheduled event node will remove the event from the queue and thus prevent it’s
execution.

7

/system/security

This is a container node that hols information about system users and application tokens.

/system/security/users Provides information on users available on the system, along with their salt
and encrypted password.

/system/security/applicationTokens This is a container node that provides information about en-
abled application tokens.

/system/security/roles Currently unsupported.

/system/host

This is a container node that provides information about the network interfaces and network configu-
ration of the host on which the dSS is running.

/system/js

This is a container node that provides information about some internal script settings. If the boolean
property ”timing” is enabled the script interpreter collects load and execution time information for each
javascript file.

/system/js/logfiles This node contains a list of internal script log files and their locations on disk.
These log files can be downloaded via the JSON API.

/config

This node holds information about the system configuration. On the top level you will find settings for
various directories used by the dSS, like directory where to search for data, webroot of the http server,
etc.

Below is a list of directory configuration nodes:

• node name: datadirectory
value type: string
description: the data directory of the dSS, most other directories and files will be stored relative to it
unless configured otherwise. For example, apartment.xml will be stored in the data directory.

• node name: configdirectory
value type: string
description: directory where dSS will search for configuration files like config.xml, subscriptions, etc.

• node name: webrootdirectory
value type: string
description: web root directory of the builtin web server

• node name: jslogdirectory
value type: string
description: directory where to store log files that are produced by internal JS scripts that are running
on the dSS

8

• node name: savedpropsdirectory
value type: string
description: directory where the dSS will save persitent property tree entries or saved properties,
configurations of internal scripts will usually be stored here.

Further, configuration of each subsystem is stored under the /config/subsystems node. One leaf node,
that is present in each subsystem is the loglevel node. The log level is stored as a numeric value, the
higher the value the less log output is produced, the values have the following meaning:

• loglevel 0: debug

• loglevel 1: information

• loglevel 2: warning

• loglevel 3: error

• loglevel 4: fatal

Apart from the loglevel, another common subsystems node is enabled. It’s a leaf node containing a
boolean value that specifies if the subsystem is currently enabled or disabled.

Note: while each subsystem will show an enabled node, not all subsystems can be actually disabled.

/config/subsystems/Metering

This node contains information about the metering subsystem.

Following leaf nodes are available:

• node name: storageLocation
value type: string
description: location of the rrd metering databases on disk

• node name: rrdDaemonAddress
value type: string
description: URI of the rrd cache daemon, if rrdcached is being used

/config/subsystems/Apartment

This node contains information about the apartment subsystem.

• node name: configfile
value type: string
description: location of the apartment.xml configuration file on disk

/config/subsystems/DSSim

Although this subsystem is showed as enabled, it is currently inactive and deprecated, simulation will
be implemented outside of the dSS.

/config/subsystems/DSBusInterface

This node contains information about the dS485 bus interface subsystem.

• node name: connectionURI
value type: string
description: URI pointing to the dS485 daemon, all communication between the dSS and the connected
hardware goes via this interface

9

Note: if the dS485 connection URI is invalid or if the dS485 daemon is not running, dSS will still start
up and try to connect to the given URI repeatedly. However, as long as the connection is not
established, you will not see any active devices and you will not be able to control and configure
your digitalSTROM installation.

/config/subsystems/WebServer

This node contains information about the built in web server configuration.

• node name: listen
value type: string
description: interfaces and ports on which the web server is listening for incoming connections. By
default SSL is used, however an “h” behind the port means, that SSL was disabled for the given port
and that it is available without encryption.

• node name: trustedPort
value type: integer
description: when accessing the dSS via a trustedPort it is enough to provide a valid username in the
HTTP Authorization header, the dSS will login this user automatically.

• node name: webroot
value type: string
description: location web root directory on disk

• node name: bindip
value type: string
description: ip of the interface to which the web server is bound

• node name: announcedport
value type: integer
description: port that is announced via avahi/bonjour

• node name: sslcert
value type: string
description: location of the web servers SSL certificate on disk

• node name: sessionTimeoutMinutes
value type: integer
description: timeout value of the session

/config/subsystems/WebServer/files This node contains a list of files that can be downloaded from
the dSS. In order to download the file issue an HTTP GET request to the following URL (depending on
your setup):

http(s)://hostip:port/download/filename.extension

/config/subsystems/EventInterpreter

• node name: subscriptionfile
value type: string
description: location of the main subscription file on disk

• node name: subscriptiondir
value type: string
description: directory where dSS will search for further subscription configurations

10

/config/geodata

This node contains information on the dSS location as well as sunset and sunrises times, the data is
updated automatically when the dSS is running. Following information is available:

• node name: latitude
value type: string
description: geographic coordinate of the dSS

• node name: longitude
value type: string
description: geographic coordinate of the dSS

• node name: sunrise
value type: string
description: time when the sun rises at the given location (see latitude and longitude)

• node name: sunset
value type: string
description: time when the sun sets at the given location (see latitude and longitude)

• node name: civil_dawn
value type: string
description: time of civil dawn at the given location (see latitude and longitude)

• node name: civil_dusk
value type: string
description: time of civil dusk at the given location (see latitude and longitude)

• node name: nautical_dawn
value type: string
description: time of nautical dawn at the given location (see latitude and longitude)

• node name: nautical_dusk
value type: string
description: time of nautical dusk at the given location (see latitude and longitude)

• node name: astronomical_dawn
value type: string
description: time of astronomical dawn at the given location (see latitude and longitude)

• node name: astronomical_dusk
value type: string
description: time of astronomical dusk at the given location (see latitude and longitude)

/apartment

This section provides information about your digitalSTROM installation, it lists all available meters and
devices, configured zones and more.

/apartment/zones

This node contains a list of zones that are configured in the apartment.

Note: the zone with id zero is a special virtual zone that contains all available devices and all
devices that were known to the dSS.

Each zone node contains the same set of sub nodes:

11

• node name: ZoneID
value type: integer
description: numeric id of the zone

• node name: name
value type: string
description: name of the zone as set by the user

Further, each zone node provides the following container nodes: devices, SensorHistory and groups.

/apartment/zones/zoneX/devices The devices node contains a list of individual device nodes, each
device node has the following properties:

• node name: dSID
value type: string
description: unique digitalSTROM ID, the device dSID

• node name: present
value type: boolean
description: flag specifying if the device is currently present in the installation, or if this is a device
that is known to the dSS but that is not currently available

• node name: name
value type: string
description: name of the device as set by the user

• node name: dSMeterDSID
value type: string
description: digitalSTROM id of the meter to which this device is connected

• node name: ZoneID
value type: integer
description: numeric id of the zone in which the device resides

• node name: functionID
value type: integer
description: function id of the device, for example the class of the device (i.e. yellow, grey, etc.) is
encoded in the function id

• node name: revisionID
value type: integer
description: revision id of the device which is the encoded firmware version

• node name: productID
value type: integer
description: numeric id of the product which identifies the device type and can be decoded to map the
human readable product types like KM, TKM, KL and so on.

• node name: lastKnownZoneID
value type: integer
description: numeric id of the last known zone, for present devices this will be the same as the ZoneID.

• node name: lastKnownMeterDSID
value type: string
description: digitalSTROM ID of the meter to which the device was last connected

• node name: firstSeen
value type: string
description: time stamp when the device was seen by the dSS for the very first time

12

• node name: lastDiscovered
value type: string
description: time stamp when the device wat last discovered by the dSS

• node name: inactiveSince
value type: string
description: time stamp sincewhen the device became inactive, this field onlymakes sense for devices
where the present flag equals to false. For devices that are present this field should be ignored as it
will show the unix epoch time.

• node name: locked
description: deprecated

• node name: outputMode
value type: integer
description: numeric value representing the output mode of the device

• node name: button
description: container for button information nodes

– node name: id
value type: integer
description: numeric value representing the id of the button, i.e. zone/area/app

– node name: inputMode
value type: integer
description: button input mode configuration value, i.e. 2way-up, 1-way, etc.

– node name: inputIndex
value type: integer
description: index of the input buttons for this device

– node name: inputCount
value type: integer
description: total number of input buttons of the physical device

– node name: activeGroup
value type: integer
description: group in which events from this device are processed

– node name: setsLocalPriority
value type: boolean
description: this flag indicates the automatic setting of calls in area scenes

• node name: SensorEvents
description: list of sensor events if configured (for example ZWS “verbrauchsmeldung”)

• node name: tags
description: deprecated

• node name: groups
description: container for a list of group nodes, providing the group membership information of the
device

• node name: sensorTable
description: this node contains a list of nodes that provide information about sensors that are available
for this device

• node name: modelFeatures
description: container for a list of modelFeature nodes overriding/ extending themodelFeatures given
in the getModelFeatures JSON call

13

content: individual model feature items are represented as boolean nodes with the model feature
name as the node name and the boolean value indicating if the feature is turned on of off

/apartment/zones/zoneX/groups/groupX This node contains information on the group, such as the
group id and name, last called scene value and a list of devices that are part of the group.

• node name: group
value type: integer
description: numeric id of the group

• node name: name
value type: string
description: human readable name of the group

• node name: scenes
description: list of nodes with custom scene names, if scenes have been renamed by the user

• node name: devices
description: container for a list of device nodes that carry information about devices which are part of
the group

/apartment/zones/zoneX/groups/groupY/sensor/typeZ Last sensor events that happened in the zone.
One node per sensor type event that occured. The special groupID ”0” subtree contains sensor value
events independent of a group or application.

• node name: type
value type: integer
description: sensor type id

• node name: value
value type: double
description: floating point value

• node name: time
value type: integer
description: time of last occurence in seconds since epoch (UTC)

• node name: timestamp
value type: string
description: time of last occurence as local time string

/apartment/dSMeters

This node contains a list of dSMs that are available in the digitalSTROM installation. Each dSM node
has the following properties:

• node name: dSID
value type: string
description: unique digitalSTROM ID, dSM dSID

• node name: powerConsumption
value type: integer
description: current power consumption of the dSM

• node name: powerConsumptionAge
value type: string
description: time stamp when the power consumption value was recorded

14

• node name: energyMeterValue
value type: integer
description: current energy meter value in Wh

• node name: energyMeterValueWs
value type: integer
description: current energy meter value in Ws

• node name: energyMeterValueAge
value type: string
description: time stamp when the energy meter values were recorded

• node name: isValid
value type: boolean
description: flag indicating if the dSM has been read out by the dSS

• node name: present
value type: boolean
description: flag indicating if the dSM is present in the installation and was found by the dSS

• node name: energyLevelRed
description: deprecated

• node name: energyLevelOrange
description: deprecated

• node name: hardwareVersion
value type: integer
description: version of the dSM hardware

• node name: armSoftwareVersion
value type: integer
description: version of the ARM firmware

• node name: dspSoftwareVersion
value type: integer
description: version of the DSP firmware

• node name: apiVersion
value type: integer
description: version of the dSM API

• node name: hardwareName
description: deprecated

• node name: name
value type: string
description: name of the dSM as set but the user

• node name: zones
description: container node, holding a list of zone nodes that represent the zones that are configured
on this dSM. The structure of the zone nodes is the same as previously described.

• node name: devices
description: container node, holding a list of device nodes that represent the devices that are con-
nected to this dSM. The structure of the device nodes is the same as previously described.

/usr

This section holds some dynamic configured values, which are configured and used for all Apps globally.

15

/usr/states

The system-states are stored in this location. This states are managed by the digitalSTROM server
itself in configuration and changing the values. They will be used as a filter for triggering a trigger and
when a action-node should be executed.

/usr/addon-states

Each addon can register own states, these are stored here in a own subnode. This states are controlled
by the proper addon by using scription-calls. This states canl be used as a filter for triggering a trigger
and when a action-node should be executed.

/usr/triggers[0..x]

In this location all registered triggers are stored. That triggers can be registered on standardized
events; when one of the events are raised, the dSS evaluates the definition found in triggerPath and
when all parameters matches and conditions (such as timeframes and system-states) are met, it will
raise a Event named relayedEventName with the original path of the trigger, the original parameters of
the incomming event and the additionalRelayingParameter.

• node name: id
value type: integer
description: internal ID of that trigger-registration. Please don’t touch it

• node name: triggerPath
value type: string
description: path of the trigger defination, where the matching parameters for the trigger is located.
For description of the format please refer to scripting documentation

• node name: relayedEventName
value type: string
description: the result event, which will be raised, when the trigger matched the conditions

• node name: additionalRelayingParameter
value type: string
description: adding some extra parameters for the relayed event

/usr/events[0..x]

In this location all User-Defined-Actions are stored. They will be accessible for all other apps and UIs
for execute them oder register a trigger on them. The App User Defined Action configure that values
and restore of them on startup, so modifying that events should be only done though the UDA-App.

• node name: id
value type: integer
description: internal ID of that UDA. Please don’t touch it

• node name: name
value type: string
description: name of the UDA

• node name: lastSaved
value type: int
description: timestamp when the entry is been last saved

16

• node name: lastExecuted
value type: int
description: timestamp when the entry is been last executed via UI

• node name: actions
value type: subnode - type action (please refer to the scripting documentation
description: actions that will be executed

• node name: conditions
value type: subnode - type condition (please refer to the scripting documentation)
description: condition which should be met when executed

/scripts

This is the place where internal JS scripts that are running on the dSS will store their data, the node
name of each sub node uses the script id that was configured for the particular script.

17

Events

The digitalSTROM-Server is the central engine to process system events. Internally the server uses an
event interpreter to process events and to execute event handlers from extension scripting modules
and server addons.

Events originate from different sources:

• digitalSTROM System-Level-Events, originating from the dS485 bus

• digitalSTROM High-Level-Events, raised by dSS Addons

• Externally generated events, received through web service interface

• Server internal and data model related events

• Addon generated events

Events can be connected to an event handler using a subscription mechanism. Events carry context
and parameters that allows context evaluation and further processing by the event handler.

The JSON API allows remote applications to register and wait for particular events. The remote call is
blocking and will return when the event occur. The returned values contain the same parameters that
would be passed to internal event handler.

The JSON API function ”/json/event/raise” allows to inject events into the event queue. Required pa-
rameter is the event name, optionally additional parameters can be passed.

Subscriptions

Static Subscriptions

The dSS internal subscriptions to events are configured in the data/subscriptions.xml. Custom sub-
scriptions for dSS Addons are placed in separate files in the the directory data/subscriptions.d/. These
binding of scripts to specific events is a static configuration option which is evaluated once at startup
of the dSS.

Subscriptions connect a handler to an event source and adds additional parameters that are required
for the event handler execution.

The following excerpt shows how to run a script (data/initialize.js) on startup:

Listing 1: Subscription Example 1
< subscr ip t i on event−name="running" handler−name="javascript">

<parameter>
<parameter name="filename1">data/initialize . js</parameter>

</parameter>
< / subsc r i p t i on >

Dynamic Subscriptions

The digitalSTROM-Server JSON and Scripting API allow to dynamically add and remove subscriptions.
Those subscriptions are not persistent.

Filter

The event interpreter is able to evaluate filter expressions for subscription. This allows to have an
efficient preprocessing of events rather than running all events through a custom JavaScript handler.

18

The following example checks two conditions and only executes the event handler if both conditions
match. The first filter expressions checks for the existence of the event property phonenumber, the
second filter compares the event parameter source to a given string.

Listing 2: Filter Example 1
< subscr ip t i on event−name="phonecall" handler−name="raise_event">

<parameter>
<parameter name="event_name">bell</parameter>

</parameter>
< f i l t e r match="all">

<property− f i l t e r type="exists" property ="phonenumber" / >
<property− f i l t e r type="matches" value="0123456789" property ="source" / >

< / f i l t e r >
< / subsc r i p t i on >

The second example has a condition to check for a particular scene command and raise a custom
event MyAlarm if the scene command value matches ”74” (which is a digitalSTROM Alarm System-
Level-Event).

Listing 3: Filter Example 2
< subscr ip t i on event−name="callScene" handler−name="raise_event">

<parameter>
<parameter name="event_name">MyAlarm</parameter>

</parameter>
< f i l t e r match="all">

<property− f i l t e r type="matches" value="74" property ="sceneID" / >
< / f i l t e r >

< / subsc r i p t i on >

Event Reference

The following sections list the digitalSTROM-Server event classes and their parameters. digitalSTROM
system or device level events are detailed in the dS-Basics document.

The common event parameter originDeviceId is either the dSID of the digitalSTROM-Device from where
the System-Level-Event has been initiated or one of the following values:

Pseudo originDeviceId Description

0 Unknown Origin

1 Scripting

2 JSON

3 SOAP

4 Subscription

5 Simulation

6 Test

Table 1: Event Sources

digitalSTROM events and their parameter details are explained in the dS-Basics document. Please
refer to the corresponding chapters.

callScene and undoScene

The callScene and undoScene events are raised if the digitalSTROM-Server receives a call scene or
undo scene action request. The source of the event may be either the digitalSTROM system, internally
generated by dSS Addons or externally injected via remote JSON calls.

19

Listing 4: Example callScene Event
Parameter : ’ groupID ’ = ’1 ’
Parameter : ’ sceneID ’ = ’32 ’
Parameter : ’ zoneID ’ = ’4011 ’
Parameter : ’ or ig inDev ice ID ’ = ’3504175 fe0000000000183f2 ’

When originating from the digitalSTROM system this event is delayed by 2 seconds to ensure that only
a single appropriate event is raised for consecutive pushbutton tips. To reduce latency effects the
digitalSTROM-Meter issues scene calls faster and before the last pushbutton tip takes place.

For special applications the corresponding callSceneBus event is raised as soon as the digitalSTROM-
Server receives the system level event from a digitalSTROM-Meter.

buttonClick

The buttonClick event is raised if the digitalSTROM-Server receives a pushbutton tip event fromadigitalSTROM-
Device configured in the color ”Joker” and working in ”App Button” mode.

Listing 5: Example buttonClick Event
Parameter : ’ c l ickType ’ = ’1 ’
Parameter : ’ buttonIndex ’ = ’0 ’

When originating from the digitalSTROM system this event is delayed by 2 seconds to ensure that only
a single appropriate event is raised for consecutive pushbutton tips.

For special applications the corresponding buttonClickBus event is raised as soon as the digitalSTROM-
Server receives the system level event from a digitalSTROM-Meter.

deviceSensorEvent

The deviceSensorEvent event is raised if the digitalSTROM-Server receives a sensor table event form a
digitalSTROM-Device. The event parameters refer to the devices property tree entry ”sensorEvents/”
branch where details and specific names of the event source are stored.

Listing 6: Example deviceSensor Event
Parameter : ’ sensorIndex ’ = ’ event0 ’
Parameter : ’ sensorEvent ’ = ’ event0 ’

running

The running event is raised by the event interpreter to indicate system startup. Scripts that need early
initialization can make use of this event.

Notice At this time the data model is not synchronized with the digitalSTROM-Meters. If any data
model or property tree access is performed it has to be considered that the status of the devices is
not up to date.

model_ready

After the initial readout of the connected digitalSTROM-Meters and synchronization of the data model
the eventmodel_ready is raised.

20

dsMeter_ready

The dsMeter_ready event is raised each time a digitalSTROM-Meter is newly connected and the data of
its connected devices has been synchronized with the data mode.

Listing 7: Example dsMeter_ready Event
Parameter : ’ dsMeter ’ = ’3504175 fe0000010000012e9 ’

Private Addon Events

The server scripting addonsmay provide individual script handler for their privately used events. Those
events have to comply to the namespace convention that the event name is prefixed with the unique
script_id name.
Rule 1 digitalSTROM-Server Addons that implement private events have to prefix all event names with
their own unique addon name.

In the following example the timed-events addon subscribes to the solar computer time updates. The
subscription arranges for a new event to be raised with the name timed-events.config.

Listing 8: Addon Namespace
< subscr ip t i on event−name="solar_computer.update" handler−name="raise_event">

<parameter>
<parameter name="event_name">timed−events . config</parameter>
<parameter name="actions_default">suntime−reschedule</parameter>
<parameter name="script_id">timed−events</parameter>
<parameter name="time">+60</parameter>

</parameter>
< / subsc r i p t i on >

Event Handler

JavaScript Handler

The digitalSTROM-Server has the ability to run scripts using a JavaScript interpreter. The dSS Scripting
API includes access to the digitalSTROM data model, the property tree, metering time series, and pro-
videsmethods to execute digitalSTROMaction requests and to raise new events using JSONor Scripting
calls.

It is possible to execute several script files in the same context, the order of script execution is defined
by the index number that is appended to the filename parameter, it allows to have 1-255 scripts in the
same context, ”holes” in the enumeration are not allowed. The following example show how to run two
scripts in the same context for a given event:

Listing 9: Subscription Example 2
< subscr ip t i on event−name="model_ready" handler−name="javascript">

<parameter>
<parameter name="filename1">data/funclibrary . js</parameter>
<parameter name="filename2">data/initialize . js</parameter>

</parameter>
< / subsc r i p t i on >

The following parameters can be passed to a ”javascript” event handler. Additional private parameters
can be passed by appending ”_default” to the parameter name. Existing parameters can be overridden
using the ”_override” postfix.

The embedding JavaScript interpreter context for a subscription contains additional meta data about
the event source and the subscription in the global variable raisedEvent:

21

Parameter Description

script_id unique identifier for the script handler

filename1 path to javascript source file

actions_default passed to the script as additional parameter default

eventpropertyxyz_override override default value of eventpropertyxyz

Table 2: Parameter for handler-name=”javascript”

Listing 10: Variable raisedEvent
ra isedEvent . name = cal lScene
ra isedEvent . source = [ob jec t Object]

ra isedEvent . source . set = . zone (4011) . group (1)
ra isedEvent . source . groupID = 1
ra isedEvent . source . zoneID = 4011
ra isedEvent . source . isApartment = f a l se
ra isedEvent . source . isGroup = true
ra isedEvent . source . i sDev ice = fa l se

ra isedEvent . parameter = [ob jec t Object]
ra isedEvent . parameter . groupID = 1
ra isedEvent . parameter . sceneID = 32
ra isedEvent . parameter . zoneID = 4011
ra isedEvent . parameter . o r ig inDev i ce ID = 3504175 fe0000000000183f2

ra isedEvent . subscr ip t i on = [ob jec t Object]
ra isedEvent . subscr ip t i on . name = cal lScene

The source field is provided as reference to the source of the device. Scripts can evaluate the isApart-
ment, isGroup and isDevice fields to distinguish between the different kinds of digitalSTROM system
events.

Raise Event Handler

The raise_event handler allows to propagate an event and forward it to another handler.
< subscr ip t i on event−name="phonecall" handler−name="raise_event">

<parameter>
<parameter name="event_name">Mother−in−law−calls</parameter>

</parameter>
< f i l t e r match="all">

<property− f i l t e r type="exists" property ="phonenumber" / >
<property− f i l t e r type="matches" value="0123456789" property ="source" / >

< / f i l t e r >
< / subsc r i p t i on >

High Level Event Handler

The highlevel handler executes user defined actions. The corresponding actions are stored in a defined
format in the /usr/events/ branch of the property tree.

Subscription highlevelevent

Parameter The parameter ”id” is used to find the corresponding user defined action in the /usr/events/
subtree, see 5.7.

Action Execute Handler

The action_execute handler executes a sequence of user defined actions. The actions are stored in the
property tree path given in the event data.

22

Subscription action_execute

Parameter The parameter path is used to find the corresponding user defined action in the /us-
r/events/ subtree, see 5.4. The optional parameter delay has a value in seconds and can used to defer
the event execution and schedule it for a later time.

Trigger Handler

The system_triffer handler is a common evaluator of conditions. The handler has subscriptions to cer-
tain system events and then checks registered system triggers in the /usr/triggers/ branch of the prop-
erty tree. A new event is raised if the conditions within the trigger path do match. Event name and
additional parameters are stored in the property tree trigger node.

Sendmail Handler

The sendmailhandler formats the rawe-mail text that is then delivered to the host systemsmail transfer
agent. Depending on the digitalSTROM-Server compile-time configuration the raw text is only written
out to a file and further processed by external agents.

Subscription sendmail

Parameter Description

to recipients

from sender

cc carbon copy recipients

bcc blind carbon copy recipients

subject e-mail subject

body e-mail body text

header additional mail header lines, seperated by a new line character

Table 3: Parameter for handler-name=”sendmail”

Parameter

23

System Scripts

States - System States

System states are specialized values in the properties. Primary they represent a specific state of the
installation like Panic orHoliday. These states can be used in the apps to change the behavior of the sys-
tem. They are already in use for the presence-simulator system-addon, where the presence-simulator
is only in control of the holiday-state and which of the entries in the timed-events system-addon have
a condition based on the holiday-state.

System states are controlled by the digitalSTROM system itself and generated based on the actual
configuration.

System state values will be stored in /usr/states.

States with apartment-scope

State Value
Range

Change set by Comment

presence present,
absent

present(call scene 71)
absent(call scene 72)

indicates presence or absence of people in the apartment.

hibernation awake,
sleeping

awake(call scene 70)
sleeping(call scene 69)

indicates hibernation state of the apartment

daynight true, false internal indicates whether it is night.

twilight true, false internal indicates whether it is twilight.

daylight true, false internal indicates whether it is daylight.

holiday on, off internal indicates people are absent for a longer time.

alarm 1:’active’
2:’inactive’

active (call scene 74)
inactive
(undo call scene 74)

indicates an active alarm

alarm2 1:’active’
2:’inactive’

active (call scene 83)
inactive
(undo call scene 83)

indicates an active alarm

alarm3 1:’active’
2:’inactive’

active (call scene 84)
inactive
(undo call scene 84)

indicates an active alarm

alarm4 1:’active’
2:’inactive’

active (call scene 85)
inactive
(undo call scene 85)

indicates an active alarm

panic 1:’active’
2:’inactive’

active (call scene 65)
inactive
(undo call scene 65)

indicates that the user is scared

fire 1:’active’
2:’inactive’

active (call scene 76)
inactive
(undo call scene 76)

used to protect devices from fire damage

wind 1:’active’
2:’inactive’

active (call scene 87)
inactive
(undo call scene 87)

used to protect devices from wind damage

rain 1:’active’
2:’inactive’

active (call scene 88)
inactive (call scene 89)

used to protect devices from rain damage

hail 1:’active’
2:’inactive’

active (call scene 90)
inactive (call scene 91)

used to protect devices from hail damage

frost 1:’active’
2:’inactive’

internal
(dsm-api generic event)

used to protect devices from frost damage

continued on next page

24

continued from previous page

State Value
Range

Change set by Comment

sunlight direction direction
(North,
East,
South,
West)
active,
inactive

internal
(dsm-api generic event)

indicates an active sunlight direction (North ,East, South,
West)

building_service 1:’active’
2:’inactive’

internal
(dsm-api generic event)

indicates building service mode

heating_system 1:’active’
2:’inactive’

internal
(dsm-api generic event)

indicates heating system state (active: climate control
system running, inactive: system off)

heating_system_mode 1:’active’
2:’inactive’

internal
(dsm-api generic event)

change-over signal
(active: heating, inactive: cooling)

heating_water_system off, cold
water,
hot water,
auto

internal
(dsm-api generic event)

indicates the heating water status

Table 4: States with apartment-scope

States with zone-scope

State Value
Range

Change set by Comment

zone.<zoneID>.light 1:’active’,
2:’inactive’

inactive (call scene 0)
active (call scene != 0)

set when light is on or off (called a specific on or off scene)

zone.<zoneID>.heating 1:’active’,
2:’inactive’

inactive (call scene 0)
active (call scene != 0)

set when heating is configured State is only available when
a proper sensor device is present in zone.

zone.<zoneID>.motion 1:’active’,
2:’inactive’

internal set when a motion is detected by any sensor device con-
figured as motion-detector. State is only available when a
proper sensor device is present in zone.

zone.<zoneID>.presence 1:’active’,
2:’inactive’

internal set when presence is detected by any sensor device con-
figured as presence-detector. State is only available when
a proper sensor device is present in zone.

Table 5: States with zone-scope

States with group-scope

State Value Range Change set by Comment

wind.group<group-id> active, inactive internal state is only available for usergroups configured as
shadow group. State is set by any sensor device config-
ured as a wind sensor.

Table 6: States with group-scope

States with device-scope

State Value Range Change set by Comment

dev.<dsid>.<index> active,inactive,
unknown

internal (device
input)

state is avaible for each sensor device (like an AKM). The
<index> is for each input of the device

continued on next page

25

continued from previous page

State Value Range Change set by Comment

Table 7: States with device-scope

States - Addonstates

A Addon can also register own states, which are controlled by the app. This states can queried by other
apps, can be used as condition or trigger can be set on but only the registering app can set the specific
value.

The Addonstates ares are stored in /usr/addon-states/<addon-id>

Trigger

In the dSS all add-ons are event-driven, so a app can register some js-code when a specific events
happens. There are a couple of events, which are generated through the system, mainly per taster-
events. It is possible to make a subscription for all of these events, and every time when such a events
happened, the scripts runs andmake a check against some conditions. But there is a easier way: using
a trigger. A trigger acts like a dynamic subscription, which can filter the system-events by it’s param-
eter’s, take some other conditions like states or timeframes in account and finally, if all requirements
are met, raise a custom event for the app. This prefiltering is done in the server outside the scripting
with greater performance and lesser resource impact. The parameter of a triggermust be stored in the
propertytree and registered using a script, which is provided by the dss (/usr/shared/dss/data/script-
s/system_register_trigger.js):

• registerTrigger(tPath, tEventName, tParamObj): This function register a trigger definition found in
tPath. When a Event comes and matches to the trigger, a Event with with the name tEventName
is raised. This relayed event carries all parameter of the original event plus the triggerpath (Pa-
rametername path) and parameter which are provided in tParamObj.

• unregisterTrigger(tPath): This function unregister a trigger, which was defined in tPath.

Typical the registering of a trigger is done when the app is initializing or if a new behavior is configured
in the app.

The layout of the property-nodes of a trigger is:

• <basenode>/triggers/0/<triggerdefinition #1>

• <basenode>/triggers/1/<triggerdefinition #2>

• …

Each triggerdefinitionmust be places in a subpath triggers/xwhere triggers is required and x is a arbitary
term. For the triggerdefinition there are many possibilities:

• zone-scene: This trigger will react on a scene-call in a zone. This will be typical happen through
a taster click on a digitalSTROM-Device. Parameters:

– type: string, must be zone-scene

– zone: integer, id of the zone. The zone with the id 0 will be used for apartmentwide scene-
calls like bell or panic.

– group: integer, id of the group. The group with the id 0will be used for apartmentwide scene-
calls like bell or panic.

– scene: integer, id of the scene. please refer to the scene-table

26

– dsid(optional): string, id of a device, which has caused the scene-call. this parameter can be
omitted or -1 to skip the source device filtering.

• device-scene: This trigger will react on a scene-call for a device. This will happen, if a local switch
on a device has been used. Parameters:

– type: string, must be device-scene

– dsid: string, id of a device, which has caused the scene-call.

– scene: integer, id of the scene. please refer to the scene-table. use -1 as scene-id for trig-
gering on all scene-calls from the device

• device-sensor: This trigger will react on a sensor-message of a device. On the 1.5 dS-System
a sensor message will come from a consumption message, later there will be more sensoric
events. Parameters:

– type: string, must be device-sensor

– dsid: string, id of a device, which has caused the scene-call.

– eventid: integer, id of the sensor-event.

• device-msg: This trigger will react on a message from a taster, which is not interpreted by a
statemaschine of the dsm. typical that will be black taster configured not to a specific color.
Parameters:

– type: string, must be device-msg

– dsid: string, id of a device, which has caused the device-message.

– msg: integer, id of the message.

– buttonIndex(optional): integer, id of the button-index of the taster. if this parameter is omitted
or -1, it will be ignored

• device-action: This trigger will react on direct action from a button, which is not interpreted by a
statemaschine of the dSM. Parameters:

– type: string, must be device-action

– dsid: string, id of a device, which has caused the device-message.

– action: integer, id of the action.

• custom-event: This trigger will react on a custom event, which is raised by a other app or UI.
Parameter:

– type: string, must be custom-event

– event: string, id of the custom-event

• event: This trigger will react on the event given in the name parameter. All parameters in ”/pa-
rameter” have to match equally named properties in the event. Extra properties in the event are
ignored. Parameter:

– type: string, must be event

– name: string, name of the matched event

– parameter/<name>: string, optional, arbitrary named parameter to match event property

– parameter/<name1>: string, optional, arbitrary named parameter to match event property

Additional to the trigger-parameter the conditions will first be evaluated, if a trigger is generally en-
abled. Please refer to conditions section.

27

Actions

Beside direct system-calls in the apps or using the JSON, there is a more convenient method to define
some actions, which should be executed by digitalSTROM. The definition of the actions is stored in the
propertytree and they can be started by raising the action_execute event with the parameter pathwhere
the definition of the actions are stored. The dSS-core will execute the actions step by step. When two
actions causes dSM-Api calls there might be a small delay to ensure that all calls will be executed.
Each step can also have a intentional defined delay to get some delayed actionsequences. Every time
when a action should be executed, regardless it is started just now be a event or delayed step from a
sequence, which has started earlier, a condition-definition will be evaluated (please refer to Conditions
for details on conditions), which finally decides if the particular action should be executed. A condition
can disable the execution of the stept in a action-sequence, but the whole action-sequence is not been
stoped, so later steps of the sequence, which has been delayed might been executed anyhow, if later
the conditions has been checked then successfully.

The layout of the property-nodes of a actiondefinition is:

• <basenode>/actions/0/<actionsdefinition #1>

• <basenode>/actions/1/<actionsdefinition #2>

Each action-step must be places in a subpath actions/x where actions is required and x is a arbitary
term. For the actions-step definition there are many possibilities:

• zone-scene: This action will cause a scene-call to a specific zone and group Parameters:

– type: string, must be zone-scene

– zone: integer, id of the zone. The zone with the id 0 will be used for apartmentwide scene-
calls like bell or panic.

– group: integer, id of the group. The group with the id 0will be used for apartmentwide scene-
calls like bell or panic.

– scene: integer, id of the scene. please refer to the scene-table

– force(optional): bool, causes a force-call-scene instead of a call-scene. this parameter can
be omitted

• device-scene: This action will make a scene-call for a device. Parameters:

– type: string, must be device-scene

– dsid: string, id of the target device

– scene: integer, id of the scene. please refer to the scene-table.

– force(optional): bool, causes a force-call-scene instead of a call-scene. this parameter can
be omitted

• device-value: This action causes a setOutputValue-action to a device. It is not adviseable to use this
action, please prefer scene-calls (likeMIN-Scene andMAX-Scene for turning on/off), because this
can be executed faster and the system can better keep track of the current room state. At last,
the parameter value is bound to a specific behavior of the devices, and it is not guaranteed, that
all devices might act on the same manner on that value. Parameters:

– type: string, must be device-value

– dsid: string, id of the target device

– value: integer, 8-Bit value, send directly to the device.

• zone-blink: This action causes a blink-action to a group in a zone. Light devices will blink, shutters
will shortly twitch etc. Parameters:

28

– type: string, must be zone-blink

– zone: integer, id of the zone. The zone with the id 0 will be used for apartmentwide calls.

– group: integer, id of the group. The group with the id 0 will be used for apartmentwide calls.

• device-blink: This action causes a blink-action to device. Light devices will blink, shutters will
shortly twitch etc. Parameters:

– type: string, must be device-blink

– dsid: string, id of the target device

• custom-event: This action will cause a execution of a custom event. This will not be the direct
execution of the action-nodes of a custom event, rather this will raise a new event highlevelevent
for requesting and queueing execution (and before evaluation the conditions) of the custom event.
So if the conditions of a custom-event prohibits it execution, it will not be executed, regardless if
the request comes from a external command or a relaying throught this action-step. Parameter:

– type: string, must be custom-event

– event: string, id of the custom-event

• url: This action will cause a URL-Request. Both HTTP-Request and HTTPS-Request are possible,
but actual only GET-Requests with Parameters in the Query-String are possible. Be aware, when
a URL is not accessable, it will slow down the execution of the action seriously. Parameter:

– type: string, must be url

– url: string, uri of the request, following the structure http://www.digitalstrom.org

Each action-step can have a additional parameter regardless of the type:

• delay: integer, execution delay in seconds from the initial event raising.

Conditions

The conditions provides a mechanism to manipulate the execution of a action or the evaluation of a
trigger. They can be used to define conditions based on system-states or timeframes. Before a trigger
is evaluated or a action is executed, all conditions must be checked successfully. If a condition is not
defined, it is ignored. The layout of the property-nodes of a condition definition is:

• <basenode>/conditions/<type-of-condition>/…

• <basenode>/conditions/<type-of-condition>/…

This conditions are currently avaible:

• enabled: bool, must be true. If false, the check fails.

• states: defines conditions based of system-states which are located in /usr/state. Multiple states
can de specified, which all must be equal to the current states. For each state two parameter
must be provided:

– conditions/states/<X>/name : name of the requested state

– conditions/states/<X>/value : value of the requested state

There can be more than one definition, the naming of <X> is arbitrary.

• zone-states: defines which last scene in one or more zones/groups must has been called. For
each zone-state three parameter must be provided:

– conditions/zone-states/<X>/zone : id of the zone

– conditions/zone-states/<X>/group : id of the group

29

– conditions/zone-states/<X>/scene : id of the last called scene

There can be more than one definition, the naming of <X> is arbitrary. For successful checking
this condition, only one of this zone-states must be equal to the current last called scenes.

• weekdays:string, format comma-seperated with a number for each weekday (0: sunday, 1: mon-
day …6: saturday)

• time-start:string, format HH:MM:SS. The check fails, if the actual time is before the defined time-
string.

• time-end:string, format HH:MM:SS. The check fails, if the actual time is before the required time-
string.

• date: define time periods that are checked against the execution time of the action. For each date
three parameter must be provided:

– conditions/date/<X>/start : interval start; ISO date-time string (e.g. ”20150707T170000”)

– conditions/date/<X>/end : interval end; ISO date-time string (e.g. ”20150707T180000”)

– conditions/date/<X>/rrule : ical RRULE specifying the reoccurrence (e.g. ”FREQ=DAILY;BYMONTH=7;UNTIL=20160801T000000Z”)

(In the above example the action is only executed between 5 pm and 6 pm in July 2015.)

There can be more than one definition, the naming of <X> is arbitrary. For successful checking
this condition, the current date has to be in only one of this date ranges.

Chaining Trigger and Actions

All trigger, conditions and actions are stored in the property-tree. When defining a action, it must be
in a childnode named action resp. trigger. When a trigger matches and raises a relayed event, it pro-
vides the original path in the parameter path. To execute a action, you must raise a event with name
action_execute and the parameter path. This convention is defined on purpose: by putting a trigger-
definition and a action-definition in the same propertytree path and register the trigger with the path
and event-name action_execute, a chaining of a trigger with a action is defined and that chain will be
executed without using any app-specific script. This chain can be controlled outside by setting param-
eters like enabled in the conditions. If a delay between triggering event and reaction should be defined,
just provide as additional Parameter in the registerTrigger call time=+10 (for a 10 seconds delay). If a
more complex logic is needed, the chain can be broken by register the trigger with a other eventname,
but the action-definition can also be stored in the same location.

Included scripts - UDA

UserDefinedActions are named action-sequences (with conditions) which are stored globally in the dss
in the /user/event path in the propertytree. The system-addon user-defined-actions is in charge of ad-
ministration of these actions, so modifing these events with a own app should be not be done per direct
property treemanipulation, but by inter-app communication (please refer to App to App communication).
The main advantage is, that all addons can utilize this actions as systemwide actions, for example the
timed events app list all UDAs for scheduling, and if a own app specify someUDA, they will be accessible
through the allready provides timed-events app.

Included scripts - Solar computer

The solar-computer scripts are some scripts how calculate each day the sunrise, sunset, dawn and
dusk time, based on the stored geografic position of the dss and astronomical calculations. The calcu-
lated values are stored in /config/geodata/sunrise, /config/geodata/sunset, /config/geodata/civil_dusk and
/config/geodata/civil_dawn in a stringpattern pattern of HH:mm:ss. That will done at 3 o’clock and the

30

solar-computer raises a solar_computer.update - event when new calculation should start. If a other
app using that values, it is adviceable to schedule a timedevent right 1 second after that update to get
fresh values.

31

Authentication

Notice The digitalSTROM-Server uses a self signed certificate, so in order to connect the user
should accept that the certificate is not signed by a known authority. This can also be solved by
simply accepting any certificate in your network client.

Configurator and Addons

The dSS11 configurator and dSS Addons are accessible with the https protocol on TCP port 443. This
access method uses the HTTP Digest Authentication.

The configurator itself and addons access the dSS JSON interface over port 443 where certain requests
are redirected using a proxy server. For example all URLs starting with /json/ are passed on to the dSS.

Applications

The dSS is also accessible for external applications through a HTTP based JSON interface on TCP port
8080, likewise using encrypted https. This is the preferred interface for external applications and au-
tomation systems interacting with the digitalSTROM-Server.

External applications accessing the dSS should not store passwords at any time. Instead they should
request an application-token which has to be activated by the user.

Getting a Token

First an application needs to get and store an application token from the dSS:

https://yourdss:8080/json/system/requestApplicationToken?applicationName=readableNameOfApplication

Notice When requesting an application token, the application must not be logged in with user-
name/password or access the dSS through the default HTTPS port.

Approving the token

Once the token is retrieved and stored, it can be activated from the dSS11 Web Interface. Alternatively,
the token can be approved from the application by asking the user for dSS username/password and use
this to login:

https://yourdss:8080/json/system/login?user=dssadmin&password=mysupersecretpassword

This returns a temporary session token, which can be used to enable the application token using this
command:

https://yourdss:8080/json/system/enableToken?applicationToken=theApplicationToken&token=
theTemporarySessionToken

Logging in

After the token has been approved the application may obtain a session-token by providing the applica-
tion token:

https://yourdss:8080/json/system/loginApplication?loginToken=yourtokenhere

32

Using the session token

Add the token to the http header, or add ”token=yoursessiontokenhere” to each request:

https://yourdss:8080/json/apartment/getStructure?token=yourtokenhere

The session token has a timeout of 60 seconds, but will be prolonged each time it is used/touched. If
the session token is invalid, a new session token should be acquired.

33

Metering

Available Data

The digitalSTROM-Meters provide the digitalSTROM-Server with power measurements per circuit in
one second resolution. The measurements are averaged over different time periods and stored as
time-value-pairs (time series) in a Round Robin Database (RRD) per digitalSTROM-Meter. Internally,
the digitalSTROM-Server uses the RRDTool library to store this data.

Table 8 shows the available time series.

Resolution Number of values Storage duration

1 second 600 10 minutes

1 minute 720 12 hours

15 minutes 2976 31 days

1 day 370 ∼1 year

7 days 260 ∼5 years

30 days 60 ∼5 years

Table 8: Metering Time Series

There are three different types of time series:

consumption The data points represent the average power used during the previous time slot. The
data is represented in floating point numbers and has the unit of Watt [W].

energy The data points represent an energy counter with always increasing values. This type functions
like a traditional power/energy meter. The data is represented in floating point numbers and the
unit is selectable either Watt × Seconds [Ws] or Watt × Hours [Wh].

energyDelta The data points represent the energy used during the previous time slot. This is equiv-
alent to the “consumption” values multiplied by the time slot duration (resolution). The data is
represented in floating point numbers and the unit is selectable either Watt × Seconds [Ws] or
Watt × Hours [Wh].

Accessing the Data

Currently, there is no data aggregation done over multiple digitalSTROM-Meters, so data can only be
queried per single digitalSTROM-Meter.

Current Metering Data

The current metering data can be accessed either via the Property Tree (as described in subsubsec-
tion 3.4.2) or the JSON interface or scripting functions.

Time-series Data

The time series data can only be accessed via the JSON interface or scripting functions. By default all
available data for the selected type and resolution is returned. The APIs have options to limit the time
window that is returned.

Time is represented with UNIX timestamps (seconds since 1970-01-01).

34

http://oss.oetiker.ch/rrdtool/

Communication using custom events

AddOns on the dSS can be understand as small programms on the dSS with their own capatilities and
features. The events, which are consumed by each Addon, are raised globally, so each Addon can raise
a event, which can consumed by each other Addon.

Conventions

Currently there is no namespace-handling for event-names implemented in the dSS. To avoid naming
conficts, there is the convention to add the script-id of the app before the event name like system-addon-
timed-events.config where system-addon-timed-events is the script-id and config the specific event.

App to App communication

There are two ways to get data from one app to an other:

• by writing in the propertytree-part of the foreign app

• by raising a well known event, which is consumed by the foreign app

Directly accessing the propertytree

Writing directly in the propertytree of a other app might be the easier way, but there are two major
drawback: there is no direct way to store that changes in the saved properties of the foreign app and
the foreign app is not aware of the change in his properties. so this changes are completly dynamical
and non-persistent. To make the foreign app to store that changes or just be aware of the changes,
the only possibility is to raise a event for the foreign app. Also there must be some special issues
regarding access-rights. Currently there is a access-right to properties in the /usr/state subtree using
the setStatusValue scripting call.

raising a event

The better way of communication between apps is to raise some events, which are known to be con-
sumed by the foreign app. The advantage of that approach is, that the consuming app will get the
desired parameters and it is in the responsibility of the foreign app to store the parameters and react
on the changes.

UI to App communication

A UI of a app is not fixed to a specific app apart from the fact, that a UI is installed with its app. The UI is
a rather independly operating part of the app when you look at the interaction between foreground-UI
and background-script. So they are asynchron to each other and the UI must utilize the same methods
to communicate with his background app as two apps communicate with each other:

• by writing in the propertytree via json-api

• by raising a event, which is consumed by the background app

Directly accessing the propertytree

Writing in the propertytree is possible, but it has two major drawbacks:

35

• one value can be set using the json-calls, so parsing multiple parameter results in multiple json-
calls and that may have some major performance impact.

• the background app is not aware of any change in the propertytree, so the background-app must
poll changes in the propertytree or just wait for a event from the UI. Finally only the background-
app can serialize the changes in the propertytree.

Direct writing to the propertytree is not advisable.

raising a event

The UI can also raise with the json-interface a Event with multiple parameters, which can contain all
needed values in one call. That event will be processed by the dSS-EventQueue, so using this technique
to change datamight not result in instant changes if it is compared to directly writing to the propertytree,
but if more than a few values must be changed or the background-script must react on that changes
(serialize or reinitialize itself), it worth the minor lag in response. The other advantage is, that the
background-script is naturally aware of the request and can do appending actions when some data has
been changed by serialize them or make a reinitialisation etc. The final advantage when using this
method, that a general configuration interface for the app will be specified, which can be used by other
apps.

App to UI communication

There are two methods to get some data from the background-app to the UI and they are both equal
preferable depending on the situation.

• The UI uses the property-querying JSON-calls do get data from the dSS. As with all property-tree
querying the background app will not be aware, if the UI is querying data from the tree, so that can
be used to load some static data oder settings. On the upside, the background-App can store the
data asynchronly and the UI can query them at any time. There is also no need for extra coding in
the background app. This method is good for getting structure information of the dss or the app
and data, which requires no interaction.

• The UI can subscripte to a event, which can be raised by a background app. The UI will start a
http-request, which will return data via event-parameters when a event is raised or on time out.
This method is usefull when the UI had issued some kind of command to the background app
(like save a value) and now it should get a confirmation or answer. When using this technique
take in account, that the ressources on the dSS is limited, so it is not advisable to open to much
http-requests simultaneously and only when needed.

36

Device Model Features

ModelFeatures are used to determine the visibility and (to someextent) the functionality of theConfigurator-
UI. ModelFeatures are defined per digitalSTROM-Device. The feature attributes are returned on JSON
responses as attribute per device.

For each Terminal Block type the digitalSTROM-Server maintains a list of such feature flags. For IP
Devices the VDC component provides the list of feature flags for the related devices.

The related service methods to retrieve are:
/json/apartment/getModelFeatures

and
/json/property/query2?query=/apartment/zones/*/devices/*(dSUID,name,HWInfo)/modelFeatures(*)/*

Available Model Features

dontcare

Show ”Retain output when calling scene X” check box in scene properties device configuration.

blink

Show ”Blink when calling scene X” check box in scene properties device configura tion.

37

ledauto

Radiogroup ”LED mode” in advanced scene properties device configuration supports ”auto” mode.

leddark

Radiogroup ”LED mode” in advanced scene properties device configuration supports ”dark” mode.

38

transt

Show ”Transition time” radio group in advanced scene properties device configura tion dialog.

outmode

Show ”Output mode” radio group in device properties dialog with ”switched”, ”dimmed” and ”disabled”
selections. The ”switched” parameter for this configuration has a value of 16.

39

outmodeswitch

Show ”Output mode” radio group in device properties dialog with only ”switched” and ”disabled” selec-
tions. The ”switched” parameter for this configuration has a value of 35.

outvalue8

Influences the ”Device Settings” dialog, the flag tells the UI that the device has an 8-bit output value,
however it has no direct influence on how the device is read out, currently it is only used to decide if the
dialog should be enabled (device has an output value) or not. For GR-KL there is a parallel logic which
basically signals that the device has “another” output value which is implicitly treated as 16bit and also
influences the state of the same dialog.

40

pushbutton

Show push button settings in ”Device properties” dialog. Also check if multi-button settings for device
pairing must be shown (depends on various other parameters).

pushbdevice

This flag influences the contents of the ”Push-button” drop down list, it makes sure that a ”device
pushbutton” entry is present.

41

pushbsensor

This flag influences the contents of the ”Push-button” drop down list, it makes sure that a ”sensor”
entry is present.

pushbarea

This flag influences the contents of the ”Push-button” drop down list, it makes sure that a ”Area-
pushbutton” entry is present. It also enables the area selection drop down.

pushbadvanced

42

Enables the advanced push button configuration in the ”Device Properties” dialog.

pushbcombined

This flag influences the available items of the ”Button-function” settings in the ”Device Properties”
dialog. When enabled the available items are ”1-way” (button input mode ”1way_combined”), ”2-way”
and ”1-way + joker”. When disabled the items are ”1-way” (button input mode ”1way”), ”2-way off”/”2-
way down”, ”2-way on”/”2-way up”.

shadeprops

Enables the ”Shade Device Properties” dialog for the given device in the ”Hardware” tab.

43

shadeposition

This flag is somewhat logically related to the outvalue8 flag, it influences the behavior of the ”Device
Settings” dialog. When set, the device values are assumed to have a 16bit resolution, also some labels
will show ”Position” instead of ”Value”. The flags outvalue8 and shadeposition are exclusive, it should
be noted that when both are false the ”Device value” dialog will be shown as disabled.

motiontimefins

Shows ”Turn time blades” and ”Calibrate turn times” options in the ”Device Properties shade” dialog.

optypeconfig

44

Show ”Operation Type” settings in the ”Device Properties” dialog.

shadebladeang

Show ”Set Blade Angle” option in the ”Device Settings” dialog.

highlevel

This flag influences the contents of the ”Push-button” dropdown list, it makes sure that a ”App button”
entry is present.

45

consumption

Enables the ”Configure Consumption Event” dialog for the given device in the ”Hardware” tab.

jokerconfig

Show ”Joker” configuration settings in ”Device Properties” dialog.

46

akmsensor

Show ”Sensor function” settings in ”Device Properties” dialog.

akminput

Show AKM ”Input” settings in ”Device Properties” dialog.

47

akmdelay

Show AKM ”Delay” settings in ”Device Properties” dialog.

twowayconfig

Shows the ”Button function” settings in ”Device Properties” dialog, depends on ”pushbutton” parame-
ter.

48

outputchannels

Display ”Hue” and ”Saturation” setting in the ”Device Settings” dialog.

heatinggroup

Shows ”Heating group” settings in ”Device Properties” dialog.

49

heatingoutmode

Enables the ”Output mode” radio group in ”Device Properties” dialog and influences its contents. The
presented options will be: ”switched” (65), ”pulse width modulation (PWM)” (64) and ”disabled” (0).

heatingprops

Enables the ”Device Properties climate” dialog for the given device in the ”Hardware” tab.

50

pwmvalue

Read out and display ”Operation mode” in the ”Device Settings” dialog.

valvetype

Shows ”Attached terminal device” settings in ”Device Properties” dialog.

51

extradimmer

Enables the ”Output mode” radio group in ”Device Properties” dialog and influences its contents. The
presented options will be: ”switched” (16), ”dimmed 0-10V”, ”dimmed 1-10V” and ”disabled”.

umvrelay

Shows ”Relay Function” settings in ”Device Properties” dialog.

52

blinkconfig

Shows ”Blink behavior for output on scene calls” settings in the advanced ”Device Properties” dialog.

53

umroutmode

Enables the ”Output mode” radio group in ”Device Properties” dialog and influences its contents. The
presented options will be: ”single switched” (35) for all dSUIDs and ”combined switched” (43), ”com-
bined two stage switched” (34), ”combined three stage switched” (38) and ”disabled” (0).

locationconfig

Shows the ”Location” configuration dropdown in ”Device Properties” dialog.

windprotectionconfig

Shows the ”Wind protection” configuration dropdown in ”Device Properties” dialog.

54

impulseconfig

outmodegeneric

outconfigswitch

temperatureoffset

55

Single Device Descriptions

Extended description data is available for those kind of devices that do not fit int the standard digital-
STROM data model and have additional meaningful events and actions that are to be integrated and
orchestrated with digitalSTROM.

Certain attributes of those devices are maintained in a central database. A snapshot of this database
is part of the digitalSTROM-Server firmware distribution.

Descriptions

The descriptions include following attributes:

Events

Events are a list of unique ID’s that a particular device may generate. The events do not have parame-
ters, They are meaningful on their own including the full context.

States

Devices may have states that describe the operational status. Each state is defined by an ID and a finite
set of values.

Properties

Properties represent parameterized operational values of the device or appliance. Values can be either
of the type numeric, enumeration or text. Numerical values include a unit, resolution, minimum and
maximum values, enumerations have a list of valid option values.

Measurements

Devicemeasurements are represented by sensoric values. Sensor objects are described by type id, unit
and resolution, minimum and maximum values.

Action Descriptions

Action descriptions are like templates and give the base definitions for commands that a device can ex-
ecute and process. The unique base name of the executable process and the related set of parameters
are included. The list of parameters for an action is represented like an array of properties.

Standard Actions

Standard Actions are commands ID’s that can be send to the devices and executed. These are kind
of predefined commands. Every digitalSTROM device class has a set of device actions that shall be
supported.

Translations

Any itemof the descriptions that has a title attribute has translations in all systemsupported languages.

56

Database

The database storing the previously defined attributes is part of the digitalSTROM-Server. Access to
this description data is provided to JSON API clients. For API details please read the Device Info chapter
of the dSS JSON documentation.

The key id for queries is the dSUID of a device instance or the GTIN of the product.

The database table organization is described in the following diagram.

57

Certification Rules

Rule 1 digitalSTROM-Server Addons that implement private events have to prefix all event names with
their own unique addon name.

58

	1 Introduction
	2 Webservices
	2.1 JSON
	2.2 SOAP

	3 Property Tree
	3.1 Supported Data Types
	3.2 /system
	3.2.1 /system/uptime
	3.2.2 /system/version
	3.2.3 /system/EventInterpreter
	3.2.4 /system/security
	3.2.5 /system/host
	3.2.6 /system/js

	3.3 /config
	3.3.1 /config/subsystems/Metering
	3.3.2 /config/subsystems/Apartment
	3.3.3 /config/subsystems/DSSim
	3.3.4 /config/subsystems/DSBusInterface
	3.3.5 /config/subsystems/WebServer
	3.3.6 /config/subsystems/EventInterpreter
	3.3.7 /config/geodata

	3.4 /apartment
	3.4.1 /apartment/zones
	3.4.2 /apartment/dSMeters

	3.5 /usr
	3.6 /usr/states
	3.7 /usr/addon-states
	3.8 /usr/triggers[0..x]
	3.9 /usr/events[0..x]
	3.10 /scripts

	4 Events
	4.1 Subscriptions
	4.1.1 Static Subscriptions
	4.1.2 Dynamic Subscriptions
	4.1.3 Filter

	4.2 Event Reference
	4.2.1 callScene and undoScene
	4.2.2 buttonClick
	4.2.3 deviceSensorEvent
	4.2.4 running
	4.2.5 model_ready
	4.2.6 dsMeter_ready

	4.3 Private Addon Events
	4.4 Event Handler
	4.4.1 JavaScript Handler
	4.4.2 Raise Event Handler
	4.4.3 High Level Event Handler
	4.4.4 Action Execute Handler
	4.4.5 Trigger Handler
	4.4.6 Sendmail Handler

	5 System Scripts
	5.1 States - System States
	5.1.1 States with apartment-scope
	5.1.2 States with zone-scope
	5.1.3 States with group-scope
	5.1.4 States with device-scope

	5.2 States - Addonstates
	5.3 Trigger
	5.4 Actions
	5.5 Conditions
	5.6 Chaining Trigger and Actions
	5.7 Included scripts - UDA
	5.8 Included scripts - Solar computer

	6 Authentication
	6.1 Configurator and Addons
	6.2 Applications
	6.2.1 Getting a Token
	6.2.2 Approving the token
	6.2.3 Logging in
	6.2.4 Using the session token

	7 Metering
	7.1 Available Data
	7.2 Accessing the Data
	7.2.1 Current Metering Data
	7.2.2 Time-series Data

	8 Communication using custom events
	8.1 Conventions
	8.2 App to App communication
	8.2.1 Directly accessing the propertytree
	8.2.2 raising a event

	8.3 UI to App communication
	8.3.1 Directly accessing the propertytree
	8.3.2 raising a event

	8.4 App to UI communication

	9 Device Model Features
	9.1 Available Model Features

	10 Single Device Descriptions
	10.1 Descriptions
	10.1.1 Events
	10.1.2 States
	10.1.3 Properties
	10.1.4 Measurements
	10.1.5 Action Descriptions
	10.1.6 Standard Actions

	10.2 Translations
	10.3 Database

	11 Certification Rules

