
digitalSTROM System Interfaces

digitalSTROM

Version: tag: v1.1-branch*

June 19, 2014

*Revision: b9175b4666c1b95435a7813d996eb6d96cad7ddc

1

©2012, 2013 digitalSTROM Alliance. All rights reserved.

The digitalSTROM logo is a trademark of the digitalSTROM alliance. Use of this
logo for commercial purposes without the prior written consent of digitalSTROM
may constitute trademark infringement and unfair competition in violation of
international laws.

No licenses, express or implied, are granted with respect to any of the technology
described in this document. digitalSTROM retains all intellectual property rights
associated with the technology described in this document. This document is
intended to assist developers to develop applications that use or integrate
digitalSTROM technologies.

Every effort has been made to ensure that the information in this document is
accurate. digitalSTROM is not responsible for typographical errors.

digitalSTROM Alliance
Brandstrasse 33
CH-8952 Schlieren-Zürich
Switzerland

Even though digitalSTROM has reviewed this document, digitalSTROM MAKES
NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT, ITS QUALITY, ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT THIS DOCUMENT IS
PROVIDED "AS IS", AND YOU, THE READER ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL DIGITALSTROM BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. NO
DIGITALSTROM AGENT OR EMPLOYEE IS AUTHORIZED TO MAKE ANY
MODIFICATION, EXTENSION, OR ADDITION TO THIS WARRANTY.

Contents

1 Introduction 6

2 Webservices 7
2.1 JSON . 7
2.2 SOAP . 7

3 Property Tree 8
3.1 Supported Data Types . 8
3.2 /system . 8

3.2.1 /system/uptime . 8
3.2.2 /system/version . 9
3.2.3 /system/EventInterpreter 9
3.2.4 /system/security . 9
3.2.5 /system/host . 9
3.2.6 /system/js . 9

3.3 /config . 10
3.3.1 /config/subsystems/Metering 11
3.3.2 /config/subsystems/Apartment 11
3.3.3 /config/subsystems/DSSim 11
3.3.4 /config/subsystems/DSBusInterface 11
3.3.5 /config/subsystems/WebServer 12
3.3.6 /config/subsystems/EventInterpreter 12
3.3.7 /config/geodata . 13

3.4 /apartment . 14
3.4.1 /apartment/zones . 14
3.4.2 /apartment/dSMeters 17

3.5 /usr . 19
3.6 /usr/states . 19
3.7 /usr/addon-states . 19
3.8 /usr/triggers[0..x] . 19
3.9 /usr/events[0..x] . 20
3.10 /scripts . 21

4 Events 22
4.1 Subscriptions . 22

4.1.1 Static Subscriptions 22
4.1.2 Dynamic Subscriptions 23
4.1.3 Filter . 23

4.2 Event Reference . 23
4.2.1 callScene and undoScene 24
4.2.2 buttonClick . 24

3

4.2.3 deviceSensorEvent . 25
4.2.4 running . 25
4.2.5 model_ready . 25
4.2.6 dsMeter_ready . 25

4.3 Private Addon Events . 26
4.4 Event Handler . 26

4.4.1 JavaScript Handler 26
4.4.2 Raise Event Handler 27
4.4.3 High Level Event Handler 28
4.4.4 Action Execute Handler 28
4.4.5 Trigger Handler . 28
4.4.6 Sendmail Handler . 28

5 System Scripts 29
5.1 States - Systemstates . 29
5.2 States - Addonstates . 30
5.3 Trigger . 30
5.4 Actions . 32
5.5 Conditions . 34
5.6 Chaining Trigger and Actions 35
5.7 Included scripts - UDA . 36
5.8 Included scripts - Solar computer 36

6 Authentication 37
6.1 Configurator and Addons . 37
6.2 Applications . 37

6.2.1 Getting a Token . 37
6.2.2 Approving the token 38
6.2.3 Logging in . 38
6.2.4 Using the session token 38

7 Metering 39
7.1 Available Data . 39
7.2 Accessing the Data . 39

7.2.1 Current Metering Data 40
7.2.2 Time-series Data . 40

8 Communication using custom events 41
8.1 Conventions . 41
8.2 App to App communication 41

8.2.1 Directly accessing the propertytree 41
8.2.2 raising a event . 41

8.3 UI to App communication . 41
8.3.1 Directly accessing the propertytree 42

4

8.3.2 raising a event . 42
8.4 App to UI communication . 42

9 Certification Rules 44

5

1 Introduction

This document contains instructions how to use and access the digital-
STROM Server, both for internal addon modules that enhance the system
functionality and for external applications.

The application interface itself is defined in two additional documents:

• Webservice via JSON

• Server Scripting

The documents can be downloaded from http://developer.digitalstrom.
org/Architecture.

Notice This documents refers to digitalSTROMsystem releaseR1.6 and
dSS release 1.17.3. Any later release may have additional or removed
functionality.

6

http://developer.digitalstrom.org/Architecture
http://developer.digitalstrom.org/Architecture

2 Webservices

2.1 JSON

External applications communicate with the digitalSTROM Server through
the JSON API. The full documentation and description of all the available
JSON functions and parameters can be found on the digitalSTROM devel-
oper website in the dss download directory. Please refer to the document
version corresponding to your dSS software release:

http://developer.digitalstrom.org/download/dss/

Access is granted with a token based login described in 6.

JSON requests to the API are built up like this:
https://<server ip>:<port>/json/<class>/<function>?<paramter>&<parameter>

For example this function calls scene 5 on light devices in zone 1307:
https://10.0.0.2:8080/json/zone/callScene?id=1307&groupID=1&sceneNumber=5
&force=true&token=xxxxxxxx

Not all JSON functions take parameters, for example json/apartmen-
t/getConsumption.

The JSON formatted reply returns true for "ok" if the digitalSTROMServer
successfully processed the query, and JSON objects and arrays if data was
requested.

Example reply (json/apartment/getConsumption):

{
"ok": true,
"result": {

"consumption": 74
}

}

2.2 SOAP

The digitalSTROMServer SOAP interface is deprectated should not be used.

7

http://developer.digitalstrom.org/download/dss/

3 Property Tree

The property tree allows the dSS to expose data to the outside world, it also
provides means of communication with internal scripts, serves as a data
storage for internal scripts and remote applications (such as smartphone
apps or HTML based user interfaces) and also allows limited control over
the scheduled events queue.

Each node of the property tree can be either a container, holding further
child nodes, or a leaf node, carrying actual data. When you look at the root
level, you will see a logical structure of five nodes, each holding specific
system properties:

• /system - general information about the dSS, information and control
of the event queue

• /config - configuration of the dSS and it's subsystems

• /apartment - information about your digitalSTROM installation, here
youwill see the configured zones, connectedmeters, devices and their
configurations.

• /usr - shared dynamic configuration for all Apps (like User-Defined-
Actions, system states, triggers …)

• /scripts - internal scripts running on the dSS will show up here by
their configured script_id's and can use this area to store data.

3.1 Supported Data Types

The property tree supports three data types:

• string: - sequence of characters

• boolean: - ``true'' or ``false''

• integer: numeric integer value

3.2 /system

The system block covers general information about the dSS and the host
it is running on, shows a list of scheduled events in the event queue and
allows to cancel them, it also presents security settings such as available
users and application tokens.

3.2.1 /system/uptime

This is a leaf node which contains the uptime of the dSS in seconds.

8

3.2.2 /system/version

This is a container node that holds information about the dSS version, ver-
sion of the Linux distribution that the dSS is running on, name of the build
host and the git revision of the dSS source code.

3.2.3 /system/EventInterpreter

This is a container node that holds information about the event queue of the
dSS, providing statistics on processed events and also listing the scheduled
events.

Note: removing a scheduled event node will remove the event from the
queue and thus prevent it's execution.

3.2.4 /system/security

This is a container node that hols information about system users and ap-
plication tokens.

/system/security/users Provides information on users available on the
system, along with their salt and encrypted password.

/system/security/applicationTokens This is a container node that provides
information about enabled application tokens.

/system/security/roles Currently unsupported.

3.2.5 /system/host

This is a container node that provides information about the network inter-
faces and network configuration of the host on which the dSS is running.

3.2.6 /system/js

This is a container node that provides information about some internal script
settings

/system/js/timings No clue.

/system/js/features Not sure.

/system/js/logfiles This node contains a list of internal script log files and
their locations on disk. These log files can be downloaded via the JSON API.

9

3.3 /config

This node holds information about the system configuration. On the top
level you will find settings for various directories used by the dSS, like di-
rectory where to search for data, webroot of the http server, etc.

Below is a list of directory configuration nodes:

• node name: datadirectory
value type: string
description: the data directory of the dSS, most other directories and
fileswill be stored relative to it unless configured otherwise. For example,
apartment.xml will be stored in the data directory.

• node name: configdirectory
value type: string
description: directory where dSS will search for configuration files like
config.xml, subscriptions, etc.

• node name: webrootdirectory
value type: string
description: web root directory of the builtin web server

• node name: jslogdirectory
value type: string
description: directory where to store log files that are produced by inter-
nal JS scripts that are running on the dSS

• node name: savedpropsdirectory
value type: string
description: directory where the dSS will save persitent property tree
entries or saved properties, configurations of internal scripts will usually
be stored here.

Further, configuration of each subsystem is stored under the /config/sub-
systems node. One leaf node, that is present in each subsystem is the
loglevel node. The log level is stored as a numeric value, the higher the
value the less log output is produced, the values have the following mean-
ing:

• loglevel 0: debug

• loglevel 1: information

• loglevel 2: warning

• loglevel 3: error

• loglevel 4: fatal

10

Apart from the loglevel, another common subsystems node is enabled. It's
a leaf node containing a boolean value that specifies if the subsystem is
currently enabled or disabled.

Note: while each subsystemwill show an enabled node, not all subsystems
can be actually disabled.

3.3.1 /config/subsystems/Metering

This node contains information about the metering subsystem.
Following leaf nodes are available:

• node name: storageLocation
value type: string
description: location of the rrd metering databases on disk

• node name: rrdDaemonAddress
value type: string
description: URI of the rrd cache daemon, if rrdcached is being used

3.3.2 /config/subsystems/Apartment

This node contains information about the apartment subsystem.

• node name: configfile
value type: string
description: location of the apartment.xml configuration file on disk

3.3.3 /config/subsystems/DSSim

Although this subsystem is showed as enabled, it is currently inactive and
deprecated, simulation will be implemented outside of the dSS.

3.3.4 /config/subsystems/DSBusInterface

This node contains information about the dS485 bus interface subsystem.

• node name: connectionURI
value type: string
description: URI pointing to the dS485 daemon, all communication be-
tween the dSS and the connected hardware goes via this interface

Note: if the dS485 connection URI is invalid or if the dS485 daemon is not
running, dSS will still start up and try to connect to the given URI re-
peatedly. However, as long as the connection is not established, you
will not see any active devices and you will not be able to control and
configure your digitalSTROM installation.

11

3.3.5 /config/subsystems/WebServer

This node contains information about the built in web server configuration.

• node name: listen
value type: string
description: interfaces and ports on which the web server is listening for
incoming connections. By default SSL is used, however an ``h'' behind
the port means, that SSL was disabled for the given port and that it is
available without encryption.

• node name: trustedPort
value type: integer
description: when accessing the dSS via a trustedPort it is enough to
provide a valid username in the HTTP Authorization header, the dSS will
login this user automatically.

• node name: webroot
value type: string
description: location web root directory on disk

• node name: bindip
value type: string
description: ip of the interface to which the web server is bound

• node name: announcedport
value type: integer
description: port that is announced via avahi/bonjour

• node name: sslcert
value type: string
description: location of the web servers SSL certificate on disk

• node name: sessionTimeoutMinutes
value type: integer
description: timeout value of the session

/config/subsystems/WebServer/files This node contains a list of files that
can be downloaded from the dSS. In order to download the file issue an
HTTP GET request to the following URL (depending on your setup):

http(s)://hostip:port/download/filename.extension

3.3.6 /config/subsystems/EventInterpreter

• node name: subscriptionfile
value type: string
description: location of the main subscription file on disk

12

• node name: subscriptiondir
value type: string
description: directorywhere dSSwill search for further subscription con-
figurations

3.3.7 /config/geodata

This node contains information on the dSS location as well as sunset and
sunrises times, the data is updated automatically when the dSS is running.
Following information is available:

• node name: latitude
value type: string
description: geographic coordinate of the dSS

• node name: longitude
value type: string
description: geographic coordinate of the dSS

• node name: sunrise
value type: string
description: time when the sun rises at the given location (see latitude
and longitude)

• node name: sunset
value type: string
description: time when the sun sets at the given location (see latitude
and longitude)

• node name: civil_dawn
value type: string
description: time of civil dawn at the given location (see latitude and lon-
gitude)

• node name: civil_dusk
value type: string
description: time of civil dusk at the given location (see latitude and lon-
gitude)

• node name: nautical_dawn
value type: string
description: time of nautical dawn at the given location (see latitude and
longitude)

• node name: nautical_dusk
value type: string
description: time of nautical dusk at the given location (see latitude and
longitude)

13

• node name: astronomical_dawn
value type: string
description: time of astronomical dawn at the given location (see latitude
and longitude)

• node name: astronomical_dusk
value type: string
description: time of astronomical dusk at the given location (see latitude
and longitude)

3.4 /apartment

This section provides information about your digitalSTROM installation, it
lists all available meters and devices, configured zones and more.

3.4.1 /apartment/zones

This node contains a list of zones that are configured in the apartment.

Note: the zone with id zero is a special virtual zone that contains all
available devices and all devices that were known to the dSS.

Each zone node contains the same set of sub nodes:

• node name: ZoneID
value type: integer
description: numeric id of the zone

• node name: name
value type: string
description: name of the zone as set by the user

Further, each zone node provides the following container nodes: devices,
SensorHistory and groups.

/apartment/zones/zoneX/devices The devices node contains a list of in-
dividual device nodes, each device node has the following properties:

• node name: dSID
value type: string
description: unique digitalSTROM ID, the device dSID

• node name: present
value type: boolean
description: flag specifying if the device is currently present in the instal-
lation, or if this is a device that is known to the dSS but that is not currently
available

14

• node name: name
value type: string
description: name of the device as set by the user

• node name: dSMeterDSID
value type: string
description: digitalSTROM id of the meter to which this device is con-
nected

• node name: ZoneID
value type: integer
description: numeric id of the zone in which the device resides

• node name: functionID
value type: integer
description: function id of the device, for example the class of the device
(i.e. yellow, grey, etc.) is encoded in the function id

• node name: revisionID
value type: integer
description: revision id of the device which is the encoded firmware ver-
sion

• node name: productID
value type: integer
description: numeric id of the product which identifies the device type
and can be decoded to map the human readable product types like KM,
TKM, KL and so on.

• node name: lastKnownZoneID
value type: integer
description: numeric id of the last known zone, for present devices this
will be the same as the ZoneID.

• node name: lastKnownMeterDSID
value type: string
description: digitalSTROM ID of the meter to which the device was last
connected

• node name: firstSeen
value type: string
description: time stamp when the device was seen by the dSS for the
very first time

• node name: lastDiscovered
value type: string
description: time stamp when the device wat last discovered by the dSS

15

• node name: inactiveSince
value type: string
description: time stamp since when the device became inactive, this field
only makes sense for devices where the present flag equals to false. For
devices that are present this field should be ignored as it will show the
unix epoch time.

• node name: locked
description: deprecated

• node name: outputMode
value type: integer
description: numeric value representing the output mode of the device

• node name: button
description: container for button information nodes

– node name: id
value type: integer
description: numeric value representing the id of the button, i.e.
zone/area/app

– node name: inputMode
value type: integer
description: button input mode configuration value, i.e. 2way-up,
1-way, etc.

– node name: inputIndex
value type: integer
description: index of the input buttons for this device

– node name: inputCount
value type: integer
description: total number of input buttons of the physical device

– node name: activeGroup
value type: integer
description: group in which events from this device are processed

– node name: setsLocalPriority
value type: boolean
description: this flag indicates the automatic setting of calls in area
scenes

• node name: SensorEvents
description: list of sensor events if configured (for example ZWS ``ver-
brauchsmeldung'')

• node name: tags
description: deprecated

16

• node name: groups
description: container for a list of group nodes, providing the groupmem-
bership information of the device

• node name: sensorTable
description: this node contains a list of nodes that provide information
about sensors that are available for this device

/apartment/zones/zoneX/SensorHistory List of sensor events that hap-
pened in the zone.

/apartment/zones/zoneX/groups/groupX This node contains information
on the group, such as the group id and name, last called scene value and a
list of devices that are part of the group.

• node name: group
value type: integer
description: numeric id of the group

• node name: name
value type: string
description: human readable name of the group

• node name: scenes
description: list of nodes with custom scene names, if scenes have been
renamed by the user

• node name: devices
description: container for a list of device nodes that carry information
about devices which are part of the group

3.4.2 /apartment/dSMeters

This node contains a list of dSMs that are available in the digitalSTROM in-
stallation. Each dSM node has the following properties:

• node name: dSID
value type: string
description: unique digitalSTROM ID, dSM dSID

• node name: powerConsumption
value type: integer
description: current power consumption of the dSM

• node name: powerConsumptionAge
value type: string
description: time stampwhen the power consumption valuewas recorded

17

• node name: energyMeterValue
value type: integer
description: current energy meter value in Wh

• node name: energyMeterValueWs
value type: integer
description: current energy meter value in Ws

• node name: energyMeterValueAge
value type: string
description: time stamp when the energy meter values were recorded

• node name: isValid
value type: boolean
description: flag indicating if the dSM has been read out by the dSS

• node name: present
value type: boolean
description: flag indicating if the dSM is present in the installation and
was found by the dSS

• node name: energyLevelRed
description: deprecated

• node name: energyLevelOrange
description: deprecated

• node name: hardwareVersion
value type: integer
description: version of the dSM hardware

• node name: armSoftwareVersion
value type: integer
description: version of the ARM firmware

• node name: dspSoftwareVersion
value type: integer
description: version of the DSP firmware

• node name: apiVersion
value type: integer
description: version of the dSM API

• node name: hardwareName
description: deprecated

• node name: name
value type: string
description: name of the dSM as set but the user

18

• node name: zones
description: container node, holding a list of zone nodes that represent
the zones that are configured on this dSM. The structure of the zone
nodes is the same as previously described.

• node name: devices
description: container node, holding a list of device nodes that represent
the devices that are connected to this dSM. The structure of the device
nodes is the same as previously described.

3.5 /usr

This section holds some dynamic configured values, which are configured
and used for all Apps globally.

3.6 /usr/states

The system-states are stored in this location. This states are managed by
the digitalSTROM server itself in configuration and changing the values.
They will be used as a filter for triggering a trigger and when a action-node
should be executed.

3.7 /usr/addon-states

Each addon can register own states, these are stored here in a own subnode.
This states are controlled by the proper addon by using scription-calls. This
states canl be used as a filter for triggering a trigger andwhen a action-node
should be executed.

3.8 /usr/triggers[0..x]

In this location all registered triggers are stored. That triggers can be reg-
istered on standardized events; when one of the events are raised, the dSS
evaluates the definition found in triggerPath andwhen all parametersmatches
and conditions (such as timeframes and system-states) aremet, it will raise
a Event named relayedEventName with the original path of the trigger, the
original parameters of the incomming event and the additionalRelayingPa-
rameter.

• node name: id
value type: integer
description: internal ID of that trigger-registration. Please don't touch it

• node name: triggerPath
value type: string

19

description: path of the trigger defination, where the matching parame-
ters for the trigger is located. For description of the format please refer
to scripting documentation

• node name: relayedEventName
value type: string
description: the result event, whichwill be raised, when the triggermatched
the conditions

• node name: additionalRelayingParameter
value type: string
description: adding some extra parameters for the relayed event

3.9 /usr/events[0..x]

In this location all User-Defined-Actions are stored. They will be accessible
for all other apps and UIs for execute them oder register a trigger on them.
The App User Defined Action configure that values and restore of them on
startup, so modifying that events should be only done though the UDA-App.

• node name: id
value type: integer
description: internal ID of that UDA. Please don't touch it

• node name: name
value type: string
description: name of the UDA

• node name: lastSaved
value type: int
description: timestamp when the entry is been last saved

• node name: lastExecuted
value type: int
description: timestamp when the entry is been last executed via UI

• node name: actions
value type: subnode - type action (please refer to the scripting documen-
tation
description: actions that will be executed

• node name: conditions
value type: subnode - type condition (please refer to the scripting docu-
mentation)
description: condition which should be met when executed

20

3.10 /scripts

This is the place where internal JS scripts that are running on the dSS will
store their data, the node name of each sub node uses the script id that was
configured for the particular script.

21

4 Events

The digitalSTROM Server is the central engine to process system events.
Internally the server uses an event interpreter to process events and to ex-
ecute event handlers from extension scripting modules and server addons.

Events originate from different sources:

• digitalSTROM System-Level-Events, originating from the dS485 bus

• digitalSTROM High-Level-Events, raised by dSS Addons

• Externally generated events, received through web service interface

• Server internal and data model related events

• Addon generated events

Events can be connected to an event handler using a subscriptionmech-
anism. Events carry context and parameters that allows context evaluation
and further processing by the event handler.

The JSON API allows remote applications to register and wait for par-
ticular events. The remote call is blocking and will return when the event
occur. The returned values contain the same parameters that would be
passed to internal event handler.

The JSON API function "/json/event/raise" allows to inject events into
the event queue. Required parameter is the event name, optionally addi-
tional parameters can be passed.

4.1 Subscriptions

4.1.1 Static Subscriptions

The dSS internal subscriptions to events are configured in the data/subscrip-
tions.xml. Custom subscriptions for dSS Addons are placed in separate files
in the the directory data/subscriptions.d/. These binding of scripts to specific
events is a static configuration option which is evaluated once at startup of
the dSS.

Subscriptions connect a handler to an event source and adds additional
parameters that are required for the event handler execution.

The following excerpt shows how to run a script (data/initialize.js) on
startup:

Listing 1: Subscription Example 1
< subscr ip t i on event−name="running" handler−name="javascript">

<parameter>
<parameter name="filename1">data/initialize . js</parameter>

</parameter>
< / subsc r i p t i on >

22

4.1.2 Dynamic Subscriptions

The digitalSTROM Server JSON and Scripting API allow to dynamically add
and remove subscriptions. Those subscriptions are not persistent.

4.1.3 Filter

The event interpreter is able to evaluate filter expressions for subscription.
This allows to have an efficient preprocessing of events rather than running
all events through a custom JavaScript handler.

The following example checks two conditions and only executes the event
handler if both conditions match. The first filter expressions checks for the
existence of the event property phonenumber, the second filter compares
the event parameter source to a given string.

Listing 2: Filter Example 1
< subscr ip t i on event−name="phonecall" handler−name="raise_event">

<parameter>
<parameter name="event_name">bell</parameter>

</parameter>
< f i l t e r match="all">

<property− f i l t e r type="exists" property ="phonenumber" / >
<property− f i l t e r type="matches" value="0123456789" property ="source" /

>
< / f i l t e r >

< / subsc r i p t i on >

The second example has a condition to check for a particular scene
command and raise a custom event MyAlarm if the scene command value
matches "74" (which is a digitalSTROM Alarm System-Level-Event).

Listing 3: Filter Example 2
< subscr ip t i on event−name="callScene" handler−name="raise_event">

<parameter>
<parameter name="event_name">MyAlarm</parameter>

</parameter>
< f i l t e r match="all">

<property− f i l t e r type="matches" value="74" property ="sceneID" / >
< / f i l t e r >

< / subsc r i p t i on >

4.2 Event Reference

The following sections list the digitalSTROM Server event classes and their
parameters. digitalSTROM system or device level events are detailed in the
dS-Basics document.

The common event parameter originDeviceId is either the dSID of the
digitalSTROMDevice fromwhere the System-Level-Event has been initiated
or one of the following values:

23

Pseudo originDeviceId Description
0 Unknown Origin
1 Scripting
2 JSON
3 SOAP
4 Subscription
5 Simulation
6 Test

Table 1: Event Sources

digitalSTROM events and their parameter details are explained in the
dS-Basics document. Please refer to the corresponding chapters.

4.2.1 callScene and undoScene

The callScene and undoScene events are raised if the digitalSTROM Server
receives a call scene or undo scene action request. The source of the event
may be either the digitalSTROMsystem, internally generated by dSSAddons
or externally injected via remote JSON calls.

Listing 4: Example callScene Event
Parameter : ' groupID ' = '1 '
Parameter : ' sceneID ' = '32 '
Parameter : ' zoneID ' = '4011 '
Parameter : ' or ig inDev ice ID ' = '3504175 fe0000000000183f2 '

When originating from the digitalSTROM system this event is delayed
by 2 seconds to ensure that only a single appropriate event is raised for
consecutive pushbutton tips. To reduce latency effects the digitalSTROM
Meter issues scene calls faster and before the last pushbutton tip takes
place.

For special applications the corresponding callSceneBus event is raised
as soon as the digitalSTROM Server receives the system level event from a
digitalSTROM Meter.

4.2.2 buttonClick

The buttonClick event is raised if the digitalSTROM Server receives a push-
button tip event from a digitalSTROM Device configured in the color "Joker"
and working in "App Button" mode.

Listing 5: Example buttonClick Event
Parameter : ' c l ickType ' = '1 '
Parameter : ' buttonIndex ' = '0 '

24

When originating from the digitalSTROM system this event is delayed
by 2 seconds to ensure that only a single appropriate event is raised for
consecutive pushbutton tips.

For special applications the corresponding buttonClickBus event is raised
as soon as the digitalSTROM Server receives the system level event from a
digitalSTROM Meter.

4.2.3 deviceSensorEvent

The deviceSensorEvent event is raised if the digitalSTROM Server receives a
sensor table event form a digitalSTROMDevice. The event parameters refer
to the devices property tree entry "sensorEvents/" branchwhere details and
specific names of the event source are stored.

Listing 6: Example deviceSensor Event
Parameter : ' sensorIndex ' = ' event0 '
Parameter : ' sensorEvent ' = ' event0 '

4.2.4 running

The running event is raised by the event interpreter to indicate systemstartup.
Scripts that need early initialization can make use of this event.

Notice At this time the data model is not synchronized with the digital-
STROM Meters. If any data model or property tree access is performed
it has to be considered that the status of the devices is not up to date.

4.2.5 model_ready

After the initial readout of the connected digitalSTROMMeters and synchro-
nization of the data model the eventmodel_ready is raised.

4.2.6 dsMeter_ready

The dsMeter_ready event is raised each time a digitalSTROMMeter is newly
connected and the data of its connected devices has been synchronized with
the data mode.

Listing 7: Example dsMeter_ready Event
Parameter : ' dsMeter ' = '3504175 fe0000010000012e9 '

25

4.3 Private Addon Events

The server scripting addons may provide individual script handler for their
privately used events. Those events have to comply to the namespace con-
vention that the event name is prefixed with the unique script_id name.

Rule 1 digitalSTROM Server Addons that implement private events have to
prefix all event names with their own unique addon name.

In the following example the timed-events addon subscribes to the solar
computer time updates. The subscription arranges for a new event to be
raised with the name timed-events.config.

Listing 8: Addon Namespace
< subscr ip t i on event−name="solar_computer.update" handler−name="raise_event

">
<parameter>

<parameter name="event_name">timed−events . config</parameter>
<parameter name="actions_default">suntime−reschedule</parameter>
<parameter name="script_id">timed−events</parameter>
<parameter name="time">+60</parameter>

</parameter>
< / subsc r i p t i on >

4.4 Event Handler

4.4.1 JavaScript Handler

The digitalSTROM Server has the ability to run scripts using a JavaScript
interpreter. The dSS Scripting API includes access to the digitalSTROMdata
model, the property tree, metering time series, and provides methods to
execute digitalSTROM action requests and to raise new events using JSON
or Scripting calls.

It is possible to execute several script files in the same context, the order
of script execution is defined by the index number that is appended to the
filename parameter, it allows to have 1-255 scripts in the same context,
"holes" in the enumeration are not allowed. The following example show
how to run two scripts in the same context for a given event:

Listing 9: Subscription Example 2
< subscr ip t i on event−name="model_ready" handler−name="javascript">

<parameter>
<parameter name="filename1">data/funclibrary . js</parameter>
<parameter name="filename2">data/initialize . js</parameter>

</parameter>
< / subsc r i p t i on >

The following parameters can be passed to a "javascript" event handler.
Additional private parameters can be passed by appending "_default" to the

26

Parameter Description
script_id unique identifier for the script handler
filename1 path to javascript source file
actions_default passed to the script as additional parameter default
eventpropertyxyz_override override default value of eventpropertyxyz

Table 2: Parameter for handler-name="javascript"

parameter name. Existing parameters can be overridden using the "_over-
ride" postfix.

The embedding JavaScript interpreter context for a subscription con-
tains additional meta data about the event source and the subscription in
the global variable raisedEvent:

Listing 10: Variable raisedEvent
ra isedEvent . name = cal lScene
ra isedEvent . source = [ob jec t Object]

ra isedEvent . source . set = . zone (4011) . group (1)
ra isedEvent . source . groupID = 1
ra isedEvent . source . zoneID = 4011
ra isedEvent . source . isApartment = f a l se
ra isedEvent . source . isGroup = true
ra isedEvent . source . i sDev ice = fa l se

ra isedEvent . parameter = [ob jec t Object]
ra isedEvent . parameter . groupID = 1
ra isedEvent . parameter . sceneID = 32
ra isedEvent . parameter . zoneID = 4011
ra isedEvent . parameter . o r ig inDev i ce ID = 3504175 fe0000000000183f2

ra isedEvent . subscr ip t i on = [ob jec t Object]
ra isedEvent . subscr ip t i on . name = cal lScene

The source field is provided as reference to the source of the device.
Scripts can evaluate the isApartment, isGroup and isDevice fields to distin-
guish between the different kinds of digitalSTROM system events.

4.4.2 Raise Event Handler

The raise_event handler allows to propagate an event and forward it to an-
other handler.
< subscr ip t i on event−name="phonecall" handler−name="raise_event">

<parameter>
<parameter name="event_name">Mother−in−law−calls</parameter>

</parameter>
< f i l t e r match="all">

<property− f i l t e r type="exists" property ="phonenumber" / >
<property− f i l t e r type="matches" value="0123456789" property ="source" /

>
< / f i l t e r >

< / subsc r i p t i on >

27

4.4.3 High Level Event Handler

The highlevel handler executes user defined actions. The corresponding ac-
tions are stored in a defined format in the /usr/events/ branch of the property
tree.

Subscription highlevelevent

Parameter The parameter "id" is used to find the corresponding user de-
fined action in the /usr/events/ subtree, see 5.7.

4.4.4 Action Execute Handler

The action_execute handler executes a sequence of user defined actions.
The actions are stored in the property tree path given in the event data.

Subscription action_execute

Parameter The parameter path is used to find the corresponding user de-
fined action in the /usr/events/ subtree, see 5.4. The optional parameter
delay has a value in seconds and can used to defer the event execution and
schedule it for a later time.

4.4.5 Trigger Handler

The system_triffer handler is a common evaluator of conditions. The han-
dler has subscriptions to certain system events and then checks registered
system triggers in the /usr/triggers/ branch of the property tree. A new
event is raised if the conditions within the trigger path do match. Event
nameand additional parameters are stored in the property tree trigger node.

4.4.6 Sendmail Handler

The sendmail handler formats the raw e-mail text that is then delivered
to the host systems mail transfer agent. Depending on the digitalSTROM
Server compile-time configuration the raw text is only written out to a file
and further processed by external agents.

Subscription sendmail

Parameter

28

Parameter Description
to recipients
from sender
cc carbon copy recipients
bcc blind carbon copy recipients
subject e-mail subject
body e-mail body text
header additional mail header lines, seperated by a new line character

Table 3: Parameter for handler-name="sendmail"

5 System Scripts

5.1 States - Systemstates

Systemstates are specialized values in the properties. Primary they repre-
sent a specific state of the installation likePanic orHoliday. These states can
be used in the apps to change the behaviour of the system. They are allready
in use for the presence-simulator system-addon, where the presence-simulator
is only in control of the holiday-state and which of the entries in the timed-
events system-addon have a condition based on the holiday-state.

The systemstates are controlled by the digitalSTROM system itself and
generated based on the actual configuration:

• states with apartment-scope:

– presence

– hibernation

– daynight

– twilight

– daylight

– holiday

– alarm

– alarm2

– alarm3

– alarm4

– panic

– fire

– wind

– rain

29

– hail

• states with zone-scope:

– zone.<zoneID>.light : set when light is on or off (called a specific
on or off scene)

– zone.<zoneID>.motion : set when a motion is detected be any
sensoric device configured asmotion-detector. State is only avaible
when a proper sensoric device is present in zone.

– zone.<zoneID>.presence : set when presence is detected be any
sensoric device configured as presence-detector. State is only
avaible when a proper sensoric device is present in zone.

• states with group-scope:

– wind.group<group-id> : state is only avaible for usergroups con-
figured as shadow groups. State is set by any sensoric devices
configured as wind sensor.

• states with device-scope:

– dev.<dsid>.<index> : state is avaible for each sensoric device (like
a AKM). The <index> is for each input of the device

The system state values will be stored in /usr/states.

5.2 States - Addonstates

A Addon can also register own states, which are controlled by the app. This
states can queried by other apps, can be used as condition or trigger can be
set on but only the registering app can set the specific value.

The Addonstates ares are stored in /usr/addon-states/<addon-id>

5.3 Trigger

In the dSS all add-ons are event-driven, so a app can register some js-code
when a specific events happens. There are a couple of events, which are
generated through the system, mainly per taster-events. It is possible to
make a subscription for all of these events, and every time when such a
events happened, the scripts runs and make a check against some con-
ditions. But there is a easier way: using a trigger. A trigger acts like a
dynamic subscription, which can filter the system-events by it's parame-
ter's, take some other conditions like states or timeframes in account and
finally, if all requirements are met, raise a custom event for the app. This
prefiltering is done in the server outside the scripting with greater perfor-
mance and lesser resource impact. The parameter of a trigger must be

30

stored in the propertytree and registered using a script, which is provided
by the dss (/usr/shared/dss/data/scripts/system_register_trigger.js):

• registerTrigger(tPath, tEventName, tParamObj): This function register
a trigger definition found in tPath. When a Event comes and matches
to the trigger, a Event with with the name tEventName is raised. This
relayed event carries all parameter of the original event plus the trig-
gerpath (Parametername path) and parameter which are provided in
tParamObj.

• unregisterTrigger(tPath): This function unregister a trigger, which was
defined in tPath.

Typical the registering of a trigger is done when the app is initializing or if a
new behavior is configured in the app.

The layout of the property-nodes of a trigger is:

• <basenode>/triggers/0/<triggerdefinition #1>

• <basenode>/triggers/1/<triggerdefinition #2>

• …

Each triggerdefinition must be places in a subpath triggers/x where triggers
is required and x is a arbitary term. For the triggerdefinition there are many
possibilities:

• zone-scene: This trigger will react on a scene-call in a zone. This will
be typical happen through a taster click on a digitalSTROM-device.
Parameters:

– type: string, must be zone-scene

– zone: integer, id of the zone. The zone with the id 0 will be used
for apartmentwide scene-calls like bell or panic.

– group: integer, id of the group. The group with the id 0 will be
used for apartmentwide scene-calls like bell or panic.

– scene: integer, id of the scene. please refer to the scene-table

– dsid(optional): string, id of a device, which has caused the scene-
call. this parameter can be omitted or -1 to skip the source device
filtering.

• device-scene: This trigger will react on a scene-call for a device. This
will happen, if a local switch on a device has been used. Parameters:

– type: string, must be device-scene

– dsid: string, id of a device, which has caused the scene-call.

31

– scene: integer, id of the scene. please refer to the scene-table.
use -1 as scene-id for triggering on all scene-calls from the de-
vice

• device-sensor: This triggerwill react on a sensor-message of a device.
On the 1.5 dS-System a sensor message will come from a consump-
tion message, later there will be more sensoric events. Parameters:

– type: string, must be device-sensor

– dsid: string, id of a device, which has caused the scene-call.

– eventid: integer, id of the sensor-event.

• device-msg: This trigger will react on a message from a taster, which
is not interpreted by a statemaschine of the dsm. typical that will be
black taster configured not to a specific color. Parameters:

– type: string, must be device-msg

– dsid: string, id of a device, which has caused the device-message.

– msg: integer, id of the message.

– buttonIndex(optional): integer, id of the button-index of the taster.
if this parameter is omitted or -1, it will be ignored

• custom-event: This triggerwill react on a customevent, which is raised
by a other app or UI. Parameter:

– type: string, must be custom-event

– event: string, id of the custom-event

Additional to the trigger-parameter the conditions will first be evaluated, if
a trigger is generally enabled. Please refer to conditions section.

5.4 Actions

Beside direct system-calls in the apps or using the JSON, there is a more
convenient method to define some actions, which should be executed by
digitalSTROM. The definition of the actions is stored in the propertytree and
they can be started by raising the action_execute event with the parame-
ter path where the definition of the actions are stored. The dSS-core will
execute the actions step by step. When two actions causes dSM-Api calls
there might be a small delay to ensure that all calls will be executed. Each
step can also have a intentional defined delay to get some delayed action-
sequences. Every time when a action should be executed, regardless it is
started just now be a event or delayed step from a sequence, which has
started earlier, a condition-definition will be evaluated (please refer to Con-
ditions for details on conditions), which finally decides if the particular ac-
tion should be executed. A condition can disable the execution of the stept

32

in a action-sequence, but the whole action-sequence is not been stoped, so
later steps of the sequence, which has been delayed might been executed
anyhow, if later the conditions has been checked then successfully.

The layout of the property-nodes of a actiondefinition is:

• <basenode>/actions/0/<actionsdefinition #1>

• <basenode>/actions/1/<actionsdefinition #2>

Each action-step must be places in a subpath actions/x where actions is re-
quired and x is a arbitary term. For the actions-step definition there are
many possibilities:

• zone-scene: This action will cause a scene-call to a specific zone and
group Parameters:

– type: string, must be zone-scene

– zone: integer, id of the zone. The zone with the id 0 will be used
for apartmentwide scene-calls like bell or panic.

– group: integer, id of the group. The group with the id 0 will be
used for apartmentwide scene-calls like bell or panic.

– scene: integer, id of the scene. please refer to the scene-table

– force(optional): bool, causes a force-call-scene instead of a call-
scene. this parameter can be omitted

• device-scene: This action will make a scene-call for a device. Param-
eters:

– type: string, must be device-scene

– dsid: string, id of the target device

– scene: integer, id of the scene. please refer to the scene-table.

– force(optional): bool, causes a force-call-scene instead of a call-
scene. this parameter can be omitted

• device-value: This action causes a setOutputValue-action to a device.
It is not adviseable to use this action, please prefer scene-calls (like
MIN-Scene and MAX-Scene for turning on/off), because this can be
executed faster and the system can better keep track of the current
roomstate. At last, the parameter value is bound to a specific behavior
of the devices, and it is not guaranteed, that all devices might act on
the same manner on that value. Parameters:

– type: string, must be device-value

– dsid: string, id of the target device

– value: integer, 8-Bit value, send directly to the device.

33

• zone-blink: This action causes a blink-action to a group in a zone. Light
devices will blink, shutters will shortly twitch etc. Parameters:

– type: string, must be zone-blink

– zone: integer, id of the zone. The zone with the id 0 will be used
for apartmentwide calls.

– group: integer, id of the group. The group with the id 0 will be
used for apartmentwide calls.

• device-blink: This action causes a blink-action to device. Light devices
will blink, shutters will shortly twitch etc. Parameters:

– type: string, must be device-blink

– dsid: string, id of the target device

• custom-event: This action will cause a execution of a custom event.
This will not be the direct execution of the action-nodes of a custom
event, rather this will raise a new event highlevelevent for requesting
and queueing execution (and before evaluation the conditions) of the
custom event. So if the conditions of a custom-event prohibits it ex-
ecution, it will not be executed, regardless if the request comes from
a external command or a relaying throught this action-step. Param-
eter:

– type: string, must be custom-event

– event: string, id of the custom-event

• url: This action will cause a URL-Request. Both HTTP-Request and
HTTPS-Request are possible, but actual only GET-Requests with Pa-
rameters in the Query-String are possible. Be aware, when a URL is
not accessable, it will slow down the execution of the action seriously.
Parameter:

– type: string, must be url

– url: string, uri of the request, following the structure http://www.digitalstrom.org

Each action-step can have a additional parameter regardless of the type:

• delay: integer, execution delay in seconds from the initial event rais-
ing.

5.5 Conditions

The conditions provides a mechanism to manipulate the execution of a ac-
tion or the evaluation of a trigger. They can be used to define conditions
based on system-states or timeframes. Before a trigger is evaluated or a

34

action is executed, all conditions must be checked successfully. If a con-
dition is not defined, it is ignored. The layout of the property-nodes of a
condition definition is:

• <basenode>/conditions/<type-of-condition>/…

• <basenode>/conditions/<type-of-condition>/…

This conditions are currently avaible:

• enabled: bool, must be true. If false, the check fails.

• states: defines conditions based of system-states which are located in
/usr/state. Multiple states can de specified, which all must be equal
to the current states. For each state two parametermust be provided:

– conditions/states/<X>/name : name of the requested state

– conditions/states/<X>/value : value of the requested state

There can be more than one definition, the naming of <X> is arbitrary.

• zone-states: defines which last scene in one or more zones/groups
must has been called. For each zone-state three parameter must be
provided:

– conditions/zone-states/<X>/zone : id of the zone

– conditions/zone-states/<X>/group : id of the group

– conditions/zone-states/<X>/scene : id of the last called scene

There can be more than one definition, the naming of <X> is arbitrary.
For successful checking this condition, only one of this zone-states
must be equal to the current last called scenes.

• weekdays:string, format comma-seperated with a number for each
weekday (0: sunday, 1: monday …6: saturday)

• time-start:string, format HH:MM:SS. The check fails, if the actual time
is before the defined time-string.

• time-end:string, format HH:MM:SS. The check fails, if the actual time
is before the required time-string.

5.6 Chaining Trigger and Actions

All trigger, conditions and actions are stored in the property-tree. When
defining a action, itmust be in a childnode named action resp. trigger. When
a trigger matches and raises a relayed event, it provides the original path
in the parameter path. To execute a action, you must raise a event with

35

name action_execute and the parameter path. This convention is defined on
purpose: by putting a trigger-definition and a action-definition in the same
propertytree path and register the trigger with the path and event-name ac-
tion_execute, a chaining of a trigger with a action is defined and that chain
will be executed without using any app-specific script. This chain can be
controlled outside by setting parameters like enabled in the conditions. If a
delay between triggering event and reaction should be defined, just provide
as additional Parameter in the registerTrigger call time=+10 (for a 10 sec-
onds delay). If a more complex logic is needed, the chain can be broken by
register the trigger with a other eventname, but the action-definition can
also be stored in the same location.

5.7 Included scripts - UDA

UserDefinedActions are named action-sequences (with conditions) which
are stored globally in the dss in the /user/event path in the propertytree. The
system-addon user-defined-actions is in charge of administration of these
actions, so modifing these events with a own app should be not be done per
direct property tree manipulation, but by inter-app communication (please
refer to App to App communication). The main advantage is, that all addons
can utilize this actions as systemwide actions, for example the timed events
app list all UDAs for scheduling, and if a own app specify some UDA, they
will be accessible through the allready provides timed-events app.

5.8 Included scripts - Solar computer

The solar-computer scripts are some scripts how calculate each day the
sunrise, sunset, dawn and dusk time, based on the stored geografic position
of the dss and astronomical calculations. The calculated values are stored
in /config/geodata/sunrise, /config/geodata/sunset, /config/geodata/civil_dusk
and /config/geodata/civil_dawn in a stringpattern pattern of HH:mm:ss. That
will done at 3 o'clock and the solar-computer raises a solar_computer.update
- event when new calculation should start. If a other app using that values,
it is adviceable to schedule a timedevent right 1 second after that update to
get fresh values.

36

6 Authentication

Notice The digitalSTROM Server uses a self signed certificate, so in or-
der to connect the user should accept that the certificate is not signed
by a known authority. This can also be solved by simply accepting any
certificate in your network client.

6.1 Configurator and Addons

The dSS11 configurator and dSS Addons are accessible with the https pro-
tocol on TCP port 443. This access method uses the HTTP Digest Authenti-
cation.

The configurator itself and addons access the dSS JSON interface over
port 443 where certain requests are redirected using a proxy server. For
example all URLs starting with /json/ are passed on to the dSS.

6.2 Applications

The dSS is also accessible for external applications through a HTTP based
JSON interface on TCP port 8080, likewise using encrypted https. This is
the preferred interface for external applications and automation systems
interacting with the digitalSTROM Server.

External applications accessing the dSS should not store passwords at
any time. Instead they should request an application-token which has to be
activated by the user.

6.2.1 Getting a Token

First an application needs to get and store an application token from the
dSS:

https://yourdss:8080/json/system/requestApplicationToken?applicationName=
readableNameOfApplication

Notice When requesting an application token, the application must not
be logged in with username/password or access the dSS through the
default HTTPS port.

37

6.2.2 Approving the token

Once the token is retrieved and stored, it can be activated from the dSS11
Web Interface. Alternatively, the token can be approved from the application
by asking the user for dSS username/password and use this to login:

https://yourdss:8080/json/system/login?user=dssadmin&password=
mysupersecretpassword

This returns a temporary session token, which can be used to enable
the application token using this command:

https://yourdss:8080/json/system/enableToken?applicationToken=
theApplicationToken&token=theTemporarySessionToken

6.2.3 Logging in

After the token has been approved the application may obtain a session-
token by providing the application token:

https://yourdss:8080/json/system/loginApplication?loginToken=
yourtokenhere

6.2.4 Using the session token

Add the token to the http header, or add "token=yoursessiontokenhere" to
each request:

https://yourdss:8080/json/apartment/getStructure?token=yourtokenhere
The session token has a timeout of 60 seconds, but will be prolonged

each time it is used/touched. If the session token is invalid, a new session
token should be acquired.

38

7 Metering

7.1 Available Data

The digitalSTROMMeters provide the digitalSTROMServerwith powermea-
surements per circuit in one second resolution. The measurements are av-
eraged over different time periods and stored as time-value-pairs (time se-
ries) in a Round Robin Database (RRD) per digitalSTROM Meter. Internally,
the digitalSTROM Server uses the RRDTool library to store this data.

Table 4 shows the available time series.

Resolution Number of values Storage duration
1 second 600 10 minutes
1 minute 720 12 hours
15 minutes 2976 31 days
1 day 370 ∼1 year
7 days 260 ∼5 years
30 days 60 ∼5 years

Table 4: Metering Time Series

There are three different types of time series:

consumption The data points represent the average power used during the
previous time slot. The data is represented in floating point numbers
and has the unit of Watt [W].

energy The data points represent an energy counter with always increasing
values. This type functions like a traditional power/energy meter. The
data is represented in floating point numbers and the unit is selectable
either Watt × Seconds [Ws] or Watt × Hours [Wh].

energyDelta The data points represent the energy used during the previous
time slot. This is equivalent to the “consumption” valuesmultiplied by
the time slot duration (resolution). The data is represented in floating
point numbers and the unit is selectable either Watt × Seconds [Ws]
or Watt × Hours [Wh].

7.2 Accessing the Data

Currently, there is no data aggregation done over multiple digitalSTROM
Meters, so data can only be queried per single digitalSTROM Meter.

39

http://oss.oetiker.ch/rrdtool/

7.2.1 Current Metering Data

The current metering data can be accessed either via the Property Tree (as
described in subsubsection 3.4.2) or the JSON interface or scripting func-
tions.

7.2.2 Time-series Data

The time series data can only be accessed via the JSON interface or script-
ing functions. By default all available data for the selected type and reso-
lution is returned. The APIs have options to limit the time window that is
returned.

Time is representedwith UNIX timestamps (seconds since 1970-01-01).

40

8 Communication using custom events

AddOns on the dSS can be understand as small programms on the dSS with
their own capatilities and features. The events, which are consumed by each
Addon, are raised globally, so each Addon can raise a event, which can con-
sumed by each other Addon.

8.1 Conventions

Currently there is no namespace-handling for event-names implemented in
the dSS. To avoid naming conficts, there is the convention to add the script-
id of the app before the event name like system-addon-timed-events.config
where system-addon-timed-events is the script-id and config the specific
event.

8.2 App to App communication

There are two ways to get data from one app to an other:

• by writing in the propertytree-part of the foreign app

• by raising a well known event, which is consumed by the foreign app

8.2.1 Directly accessing the propertytree

Writing directly in the propertytree of a other app might be the easier way,
but there are twomajor drawback: there is no directway to store that changes
in the saved properties of the foreign app and the foreign app is not aware of
the change in his properties. so this changes are completly dynamical and
non-persistent. To make the foreign app to store that changes or just be
aware of the changes, the only possibility is to raise a event for the foreign
app. Also there must be some special issues regarding access-rights. Cur-
rently there is a access-right to properties in the /usr/state subtree using
the setStatusValue scripting call.

8.2.2 raising a event

The better way of communication between apps is to raise some events,
which are known to be consumed by the foreign app. The advantage of that
approach is, that the consuming app will get the desired parameters and it
is in the responsibility of the foreign app to store the parameters and react
on the changes.

8.3 UI to App communication

A UI of a app is not fixed to a specific app apart from the fact, that a UI is
installed with its app. The UI is a rather independly operating part of the app

41

when you look at the interaction between foreground-UI and background-
script. So they are asynchron to each other and the UI must utilize the same
methods to communicate with his background app as two apps communi-
cate with each other:

• by writing in the propertytree via json-api

• by raising a event, which is consumed by the background app

8.3.1 Directly accessing the propertytree

Writing in the propertytree is possible, but it has two major drawbacks:

• one value can be set using the json-calls, so parsing multiple param-
eter results in multiple json-calls and that may have somemajor per-
formance impact.

• the background app is not aware of any change in the propertytree, so
the background-appmust poll changes in the propertytree or just wait
for a event from the UI. Finally only the background-app can serialize
the changes in the propertytree.

Direct writing to the propertytree is not advisable.

8.3.2 raising a event

The UI can also raise with the json-interface a Event with multiple param-
eters, which can contain all needed values in one call. That event will be
processed by the dSS-EventQueue, so using this technique to change data
might not result in instant changes if it is compared to directly writing to
the propertytree, but if more than a few values must be changed or the
background-script must react on that changes (serialize or reinitialize it-
self), it worth the minor lag in response. The other advantage is, that the
background-script is naturally aware of the request and can do append-
ing actions when some data has been changed by serialize them or make
a reinitialisation etc. The final advantage when using this method, that a
general configuration interface for the app will be specified, which can be
used by other apps.

8.4 App to UI communication

There are twomethods to get some data from the background-app to the UI
and they are both equal preferable depending on the situation.

• The UI uses the property-querying JSON-calls do get data from the
dSS. As with all property-tree querying the background app will not
be aware, if the UI is querying data from the tree, so that can be used

42

to load some static data oder settings. On the upside, the background-
App can store the data asynchronly and the UI can query them at any
time. There is also no need for extra coding in the background app.
This method is good for getting structure information of the dss or the
app and data, which requires no interaction.

• The UI can subscripte to a event, which can be raised by a background
app. The UI will start a http-request, which will return data via event-
parameters when a event is raised or on time out. Thismethod is use-
full when the UI had issued some kind of command to the background
app (like save a value) and now it should get a confirmation or answer.
When using this technique take in account, that the ressources on the
dSS is limited, so it is not advisable to open to much http-requests
simultaneously and only when needed.

43

9 Certification Rules

Rule 1 digitalSTROM Server Addons that implement private events have to
prefix all event names with their own unique addon name.

44

	1 Introduction
	2 Webservices
	2.1 JSON
	2.2 SOAP

	3 Property Tree
	3.1 Supported Data Types
	3.2 /system
	3.2.1 /system/uptime
	3.2.2 /system/version
	3.2.3 /system/EventInterpreter
	3.2.4 /system/security
	3.2.5 /system/host
	3.2.6 /system/js

	3.3 /config
	3.3.1 /config/subsystems/Metering
	3.3.2 /config/subsystems/Apartment
	3.3.3 /config/subsystems/DSSim
	3.3.4 /config/subsystems/DSBusInterface
	3.3.5 /config/subsystems/WebServer
	3.3.6 /config/subsystems/EventInterpreter
	3.3.7 /config/geodata

	3.4 /apartment
	3.4.1 /apartment/zones
	3.4.2 /apartment/dSMeters

	3.5 /usr
	3.6 /usr/states
	3.7 /usr/addon-states
	3.8 /usr/triggers[0..x]
	3.9 /usr/events[0..x]
	3.10 /scripts

	4 Events
	4.1 Subscriptions
	4.1.1 Static Subscriptions
	4.1.2 Dynamic Subscriptions
	4.1.3 Filter

	4.2 Event Reference
	4.2.1 callScene and undoScene
	4.2.2 buttonClick
	4.2.3 deviceSensorEvent
	4.2.4 running
	4.2.5 model_ready
	4.2.6 dsMeter_ready

	4.3 Private Addon Events
	4.4 Event Handler
	4.4.1 JavaScript Handler
	4.4.2 Raise Event Handler
	4.4.3 High Level Event Handler
	4.4.4 Action Execute Handler
	4.4.5 Trigger Handler
	4.4.6 Sendmail Handler

	5 System Scripts
	5.1 States - Systemstates
	5.2 States - Addonstates
	5.3 Trigger
	5.4 Actions
	5.5 Conditions
	5.6 Chaining Trigger and Actions
	5.7 Included scripts - UDA
	5.8 Included scripts - Solar computer

	6 Authentication
	6.1 Configurator and Addons
	6.2 Applications
	6.2.1 Getting a Token
	6.2.2 Approving the token
	6.2.3 Logging in
	6.2.4 Using the session token

	7 Metering
	7.1 Available Data
	7.2 Accessing the Data
	7.2.1 Current Metering Data
	7.2.2 Time-series Data

	8 Communication using custom events
	8.1 Conventions
	8.2 App to App communication
	8.2.1 Directly accessing the propertytree
	8.2.2 raising a event

	8.3 UI to App communication
	8.3.1 Directly accessing the propertytree
	8.3.2 raising a event

	8.4 App to UI communication

	9 Certification Rules

