
digitalSTROM Smartphone Apps

digitalSTROM

Version: master-branch*

June 23, 2014

*Revision: 6b45505f8633508e7540608978707e05d4eba319

1

©2012, 2013 digitalSTROM Alliance. All rights reserved.

The digitalSTROM logo is a trademark of the digitalSTROM alliance. Use of this
logo for commercial purposes without the prior written consent of digitalSTROM
may constitute trademark infringement and unfair competition in violation of
international laws.

No licenses, express or implied, are granted with respect to any of the technology
described in this document. digitalSTROM retains all intellectual property rights
associated with the technology described in this document. This document is
intended to assist developers to develop applications that use or integrate
digitalSTROM technologies.

Every effort has been made to ensure that the information in this document is
accurate. digitalSTROM is not responsible for typographical errors.

digitalSTROM Alliance
Brandstrasse 33
CH-8952 Schlieren-Zürich
Switzerland

Even though digitalSTROM has reviewed this document, digitalSTROM MAKES
NO WARRANTY OR REPRESENTATION, EITHER EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT, ITS QUALITY, ACCURACY, MERCHANTABILITY,
OR FITNESS FOR A PARTICULAR PURPOSE. AS A RESULT THIS DOCUMENT IS
PROVIDED "AS IS", AND YOU, THE READER ARE ASSUMING THE ENTIRE RISK
AS TO ITS QUALITY AND ACCURACY.

IN NO EVENT WILL DIGITALSTROM BE LIABLE FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM ANY DEFECT OR
INACCURACY IN THIS DOCUMENT, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

THE WARRANTY AND REMEDIES SET FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR WRITTEN, EXPRESS OR IMPLIED. NO
DIGITALSTROM AGENT OR EMPLOYEE IS AUTHORIZED TO MAKE ANY
MODIFICATION, EXTENSION, OR ADDITION TO THIS WARRANTY.

Contents

1 Prerequisites 4

2 The digitalSTROM JSON API 5

3 Handling login and tokens 6
3.1 First Login . 6
3.2 Subsequent Logins . 6

4 Test Server 7

5 Hello digitalSTROM apps 8
5.1 Android . 8
5.2 iPhone . 9

6 Tips and Tricks 10

7 Further references and reading 11

3

1 Prerequisites

In order to develop smartphone and other external applications for digital-
STROM, it is essential to first understand the system and its concepts. So
please read the following documents before proceeding:

• digitalSTROM Basic Concepts

• digitalSTROM System Interfaces

Communication with the digitalSTROM Server is only available through the
JSON api, so a JSON handler is needed. Using an asynchronous networking
client is also encouraged.

4

2 The digitalSTROM JSON API

External applications communicate with the digitalSTROM Server through
the JSONAPI. See the JSON documentation for a description of all the avail-
able JSON functions and parameters. Access is granted with a token sys-
tem described in 3. By default port 8080 should be used, but since the user
might have the port forwarded, it should be configurable.

JSON requests to the API are built up like this:
https://<server ip>:<port>/json/<class>/<function>?<paramter>&<parameter>

For example this function force calls scene 5 on light devices in zone 1307:
https://10.0.0.2:8080/json/zone/callScene?id=1307&groupID=1&sceneNumber=5
&force=true&token=xxxxxxxx
Not all JSON functions take parameters, for example json/apartment/get-
Consumption.

The JSON formatted reply returns true for "ok" if the digitalSTROM Server
successfully processed the query1, and JSON objects/arrays if data was re-
quested.

Example reply (json/apartment/getConsumption):

{
"ok": true,
"result": {

"consumption": 74
}

}

Tip: Install a JSON plugin in your browser and test the JSON commands
you want to use beforehand, to see the exact formatting of the reply.

Notice The digitalSTROM Server uses a self signed certificate, so in or-
der to connect the user should accept that the certificate is not signed
by a known authority. This can also be solved by simply accepting any
certificate in your network client.

1This does not guarantee execution on the digitalSTROM Meter or digitalSTROM Device
though.

5

http://developer.digitalstrom.org/download/dss/1.5/dss-1.5.0-doc/dss-1.5.0-json_api.html

3 Handling login and tokens

Access to the JSON API is granted through a token-based login method. An
application token is obtained from the digitalSTROM Server and then sub-
sequently used to request session tokens, which provide temporary access.

3.1 First Login

Connecting for the first time, a new application token is requested: 2

/json/system/requestApplicationToken?applicationName=<Your App Name>

The application token returned is a string that must be persisted in the ap-
plication. The token needs to be enabled before it is active. To do so, ask
the user for username and password for the digitalSTROM Server, and use
these to perform a login:
/json/system/login?user=<username>&password=<password>

This returns a temporary session token, which can then be used to enable
the application token:
/json/system/enableToken?applicationToken=<application token>
&token=<session token>

Notice Do not persist the username and password in your application.

3.2 Subsequent Logins

For subsequent logins, start with requesting a session token using a valid
application token:
/json/system/loginApplication?loginToken=<application token>

This returns a session token that will stay valid for 60 seconds. This time
period is reset every time the token is touched. The token is applied to all
the JSON commands e.g.:
/json/apartment/getConsumption&token=<session token>

2This function won't work if requested from a logged in session.

6

4 Test Server

If you don't have access to a digitalSTROM setup, you can remotely test your
application and JSONcommands against a setup available athttps://testrack2.aizo.com.
To access port 8080 of the digitalSTROM Server use port 58080, and for the
configurator use port 50443. Username and password is dssadmin.

A web cam is monitoring the test setup. The real time video can be seen
on the right side of the configurator page. Under the video feed is a descrip-
tion of the placement of the devices.

Figure 1: Screenshot showing the testrack2.aizo.com configurator with the
embedded webcam view

7

https://testrack2.aizo.com:50443

5 Hello digitalSTROM apps

5.1 Android

The networking client used is the callback based Android Asynchronous Http
Client3 by loopj/James Smith. All of the digitalSTROM JSON calls are col-
lected in the DsJSONService.java class, and the application runtime data are
kept in the App.java extension class. The only data persisted past applica-
tion sessions are server ip, port and application token. These are stored
using Shared Preferences.

All the functions in DsJSONService.java are built up like this:

1. Use passed arguments to build the URL string.

2. Execute HTTP GET with the URL string.

3. Create new JsonHttpResponseHandler().

4. Set onSuccess callback (executed when GET is successful)

(a) Checks if the "ok" boolean is true.

(b) Process the rest of the digitalSTROM Server JSON reply.

(c) Broadcasts completion if needed.

5. Set onFailure callback

(a) If the GET fails, it is most likely because of an invalid session
token.

(b) Call getSessionToken() passing a copy of the failed function to be
retried if successful.

When logging in for the first time, the enableApplicationToken() function is
called. This performs the JSON function json/system/login, and on success
the function json/system/enableToken ending out in a success (or failure)
broadcast.

3Find it here http://loopj.com/android-async-http/

8

http://loopj.com/android-async-http/

5.2 iPhone

Thenetworking client used is the block basedAFNetworking4 byMattt Thomp-
son. All of the digitalSTROM JSON calls are collected in the singleton class
DigitalstromJSONservice, with the digitalSTROM related runtime data being
kept in this class as well. Communication throughout the app is accom-
plished using the observer pattern, where other classes can observe digi-
talSTROM related data in the DigitalstromJSONservice class.

All the JSON related functions in DigitalstromJSONservice class are built
up like this:

1. Use passed arguments to build the URL string.

2. Setup a AFJSONRequestOperation using the URL string.

3. Setup the success block (executed when request is successful)

(a) Checks if the "ok" boolean is true.

(b) Process the rest of the digitalSTROM Server JSON reply.

4. Set the failure block

(a) If the request fails, it is most likely because of an invalid session
token.

(b) Call updateSessionToken passing a block with the failed function
to be retried if successful.

5. Start the the request operation.

4Find it here http://afnetworking.com

9

http://afnetworking.com

6 Tips and Tricks

Most of the digitalSTROM Server data is exposed in the property tree5 so
you will quickly find the /json/property/query JSON call very useful. Here is
an example query that retrieves the names and ids of User Defined Events
on the digitalSTROM Server:
/json/property/query?query=/usr/events/*(name,id)

The property tree can be browsed from the digitalSTROM Configurator,
by selecting "Advanced View" --> "System" tab --> "Property Tree".

Scenes that have not been renamed, or otherwisemodified, will not have
a node in the property tree. They can still be called though. Your applica-
tion have to take this into account, usually by creating your scene objects
with default names, and then update their names according to the values
returned from the digitalSTROM Server.

5See the the Property Tree chapter in the digitalSTROM System Interfaces document.

10

7 Further references and reading

11

	1 Prerequisites
	2 The digitalSTROM JSON API
	3 Handling login and tokens
	3.1 First Login
	3.2 Subsequent Logins

	4 Test Server
	5 Hello digitalSTROM apps
	5.1 Android
	5.2 iPhone

	6 Tips and Tricks
	7 Further references and reading

